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Abstract 

Construction is considered one of the primary consumers of resources and energy and the most damaging to the 

environment, generating one of the most significant amounts of CO2. Cement, an essential concrete component, is one of 

the world's most widely used construction materials, responsible for about 7% of CO2 emissions. This underscores the 

importance of quality control, maintenance, and sustainability in preserving the current built stock and extending the 

standing structures' life span, ensuring that their impact on the environment during their utilization is minimal. However, 

despite advancements in concrete science, designing concrete with specific properties remains a complex task due to the 

increasing complexity of cementitious systems. Machine learning (ML), known for its ability to handle complex tasks 

autonomously, has shown significant promise in concrete research. As ML is rapidly being adopted for concrete mixture 

design and other functions, it's crucial to understand its methodological limitations and establish best practices in this 

emerging computational field. Integrating Artificial Intelligence (AI) and Machine Learning (ML) into the maintenance 

and repair of concrete structures has revolutionized the industry, enhancing predictive capabilities, optimizing operational 

efficiency, and reducing costs. This paper provides a comprehensive overview of the evolution of AI and ML in concrete 

structure maintenance, examines current trends, and explores future possibilities. Graphs and references are included to 

support the discussion. This paper explores the positive impacts of ML on concrete science, discusses the implementation, 

application, and interpretation of ML algorithms, and outlines future directions for fully leveraging ML models in the 

concrete industry. It also emphasizes the vital role of AI and ML in the evaluation, repair, and maintenance management 

of structures.  
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1 Introduction 
Concrete, a cornerstone of modern infrastructure, is evolving with the integration of Artificial Intelligence (AI) and Machine 

Learning (ML). These advanced technologies are revolutionizing concrete science and technology, enhancing material 

properties, improved construction practices, and sustainable development. This article explores the significant impact of AI 

and ML on concrete science and provides real-world examples to illustrate their applications. 

Concrete is Earth's most widely used human-made material and the second most consumed commodity after water. Unlike 

other engineering materials such as steel, plastics, and wood, concrete is crucial in the construction industry due to its unique 

blend of strength, affordability, moldability, and durability. Portland cement world consumption is reaching 2.0 billion tons, 

and the concrete industry consumes approximately 8 billion tons of natural aggregates yearly [1]. Concrete research and 

application have progressed through three scientific models: experimentation, theory, and computation. The properties and 

performance of concrete can be tailored to meet specific design requirements by varying the type and quantity of mixture 

constituents, such as cement, water, aggregate, and admixtures. Traditional concrete mix design methods rely on trial and 

error, involving iterative proportioning, processing, and characterization until the desired properties are achieved. Although 

this method has had some success, it requires significant investments in time and resources. For instance, optimizing the 

compressive strength of concrete mixtures can be achieved by adjusting the water/cement ratio, total aggregate/cement ratio, 

and coarse aggregate/total aggregate ratio. However, the practical application of this iterative refinement approach is limited 

by the exponential increase in specimens and experiments required when studying complex concrete mixtures with multiple 

compositional parameters considered combinatorial variables [2,3]. Consequently, materials development in concrete science 

involves time-consuming validation and development cycles from laboratory trials to field applications of the first model, as 

shown in Figure 1. Thus, efforts to accelerate knowledge acquisition and materials design in concrete science are paramount. 
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Figure 1: Four phases of concrete models 

 

However, microstructural models of cement hydration have provided a fundamental understanding of how concrete's 

microstructure relates to its properties. This marked the second model of theoretical science by applying basic laws of kinetics, 

thermodynamics, and mechanics to cement hydration. Many models have been developed simulating the hydration process 

and microstructure development in cementitious systems, helping to describe time-dependent material properties like 

mechanical and transport properties. Alongside these developments, thermodynamics has been used to systematically study 

the stability and performance of concrete mixtures. However, the complexity of cement hydration poses challenges for creating 

accurate and generalizable models, which often rely on experimental data or atomistic and molecular-scale calculations [2]. 

The rise of computing power has enabled advanced simulations in concrete science, leading to the third model of 

computational science. These advanced simulations have focused on cementitious phases, such as calcium silicate hydrate (C-

S-H) gel, the primary product of cement hydration. This transformation has revealed important details about concrete at the 

most minor scales, offering valuable data for microstructure modeling and enhancing experimental studies. However, these 

simulations require a lot of computing power and face challenges like short simulation times and small sample sizes. Validating 

these simulations with experiments is also challenging due to their small scale and the need for precise measurements.  

AI and ML brought a new, data-driven approach to concrete research and applications. These technologies can analyze large 

datasets to find patterns and valuable information, helping to understand and design better concrete mixtures. ML maps out 

the relationships between concrete's processing, structure, properties, and the hardened concrete's performance, durability, and 

sustainability. This opened the field for applying ML in the evaluation, identifying cracks and deteriorating structures, and 

repairing and conserving the building stock, including bridges and hydraulic structures.    

This paper will explore the multifaceted applications of machine learning in concrete technology, encompassing maintenance 

and long-term monitoring aspects. By investigating these factors and methodologies, the study will outline future trends of 

preventive maintenance that aim to enhance construction infrastructure's durability, sustainability, and functionality.    

 

2 Diverse Applications of AI and ML in Concrete Technology 

2.1 Concrete Manufacturing and Artificial Intelligence 

 

In concrete technology, manufacturing concrete is arguably the most crucial aspect of the entire process, significantly 

influencing the outcome and properties of the final hardened concrete; Figure 2 shows the basic concepts of concrete 

manufacturing [3]. Regardless of the care taken in selecting the type and source of cement, choosing the most suitable 

aggregates, and using the highest quality additives and admixtures, the manufacturing process remains the most decisive factor 

for achieving high-quality concrete tailored to specific needs and applications. Traditional methods for designing concrete 

mixtures often depend on iterative trial-and-error processes involving proportioning, processing, and characterization until the 

desired properties are achieved. Despite some success, these methods demand substantial time and resources. 

 



 

 
Figure 2: basic concepts of concrete manufacturing. 

 

For instance, optimizing the compressive strength of concrete can be achieved by adjusting the water/cement ratio, total 

aggregate/cement ratio, and coarse aggregate/total aggregate ratio. However, the practical application of this iterative 

refinement approach is constrained by the exponential increase in the number of specimens and experiments required when 

dealing with complex concrete mixtures, where multiple compositional parameters are treated as combinatorial variables. 

Consequently, materials development in concrete science entails time-intensive validation and development cycles from 

laboratory trials to field applications. Accelerating knowledge acquisition and materials design in concrete science is therefore 

critically important. 

Artificial Intelligence (AI) and Machine Learning (ML) have revolutionized concrete research and applications by introducing 

a data-driven approach that significantly enhances the understanding and optimization of concrete materials [4]. These 

technologies can analyze extensive datasets to uncover patterns and extract valuable insights, thereby facilitating the 

development of superior concrete mixtures.  

ML algorithms are particularly adept at mapping the complex relationships between concrete’s processing parameters, 

microstructural characteristics, material properties, and overall performance [4]. By leveraging large-scale data, ML models 

can predict the outcomes of different mixture designs, allowing researchers to fine-tune formulations for specific applications. 

This predictive capability is crucial for optimizing strength, durability, and workability.  

One of ML's significant contributions to concrete science is its ability to elucidate the mechanisms of hydration and 

degradation. Through detailed analysis of experimental data, ML models can identify key factors influencing the hydration 

process of cementitious materials and predict long-term degradation behaviors under various environmental conditions. This 

understanding is essential for developing concrete with enhanced longevity and sustainability. ML techniques have been 

applied across a spectrum of concrete types, from traditional Portland cement-based mixtures to advanced composites and 

eco-friendly alternatives. By analyzing the performance of different materials, ML can guide the development of novel 

concrete formulations with tailored properties. For instance, ML can assist in designing concrete with reduced carbon 

footprints by optimizing the use of supplementary cementitious materials and alternative binders. 

As ML tools become increasingly sophisticated and accessible, their integration into concrete research is expected to expand. 

The growing availability of open-source ML platforms and computational resources will enable broader adoption in the field, 

driving innovation and accelerating discoveries. In particular, the application of ML in real-time monitoring and predictive 

maintenance of concrete structures holds promise for enhancing the durability and safety of infrastructure. ML processes and 

analyzes large experimental datasets, improving methods like ultrasonic pulse velocity, ground-penetrating radar, and digital 

photography for evaluating concrete properties and detecting damage. It enhances computational simulations, aiding in the 

design and optimization of materials by determining necessary parameters from limited experimental data and accelerating 

molecular simulations. 

These advancements highlight the significant impact of ML on concrete science, providing new tools for research and practical 

applications. Table  1 outlines some of the applications of ML in concrete science and technology. 

 

 
Table 1 ML Applications in Concrete Science and Technology 

 

 



 
Applications Description 

Properties of concrete 

 

Compressive Strength, Flexural Strength, Tensile Strength, Shear 

Strength, Elastic Modulus, Flowability, Setting Behavior 

Hardened concrete 

 
Creep, Shrinkage, Thermal Performance, Crack Detection 

Materials 

 

Cement Manufacturing Process Optimization; Aggregate Shape 

Identification 

Mix Proportioning and Design 
Concrete Mix Design Optimization; Quality Control for Concrete 

Admixture Manufacturing 

Durability Prediction 
Permeability, Freeze-Thaw Durability, Carbonation, Chloride 

Diffusion, Alkali-Silica Reaction, Corrosion, Sulfate Attack, 

Miscellaneous 

Pore Structure Analysis;  Hydration Reactions, Pozzolanic Reactivity, 

Mechanical Behavior of Calcium Silicate Hydrate (C-S-H), 

Interatomic Potentials for C-S-H, Fracture Properties of an Interfacial 

Transition Zone 

 

2.2 Challenges Facing ML in Concrete Science 

 

In the previous sections, we reviewed the applications and challenges of machine learning (ML) in concrete science. Despite 

many publications on ML in cement and concrete research over the past decade, several challenges have prevented its 

widespread adoption in the construction industry [5]. Here, we share best practices to support a robust, data-informed concrete 

science ecosystem. 

 

1- Sharing Data and Tools: ML algorithms can analyze large, multidimensional datasets and identify complex 

relationships. However, many ML models in concrete science are trained on insufficient data due to long 

experimental durations and inconsistent data formats. Few large datasets are publicly accessible, and efforts should 

be intensified to fill this gap. Developing new data repositories and expanding access to existing ones can address 

data sparsity. Platforms like the UC Irvine Machine Learning Repository and the Materials Project offer valuable 

examples. Researchers should be encouraged to share their experimental data publicly, even negative or null results, 

which are useful for training ML models. Although data protection and ownership concerns exist, a cultural shift 

toward improving research data accessibility and traceability is underway. Inconsistencies or incomplete data across 

studies should also be addressed. Different testing standards, specimen preparation methods, and reporting formats 

can cause variability. Clear and consistent standards for reporting and sharing experimental data are needed. Sharing 

computational methodologies, including models, procedures, and source codes, is crucial for reproducibility and 

generalizability. Comprehensive descriptions of methodological steps are necessary, including problem definition, 

data collection, preprocessing, model development, and evaluation. 

2- Linking Laboratory and Field Data: Most ML models predicting concrete properties use controlled laboratory data, 

which do not reflect real-world variability. Variations in materials, processes, and environmental conditions can 

introduce noise into field data, making applying laboratory models to field conditions difficult. Training models on 

field data can improve predictions, but collecting field data is challenging. Hybridizing laboratory and field data for 

training ML models is a potential solution. For example, incorporating a small percentage of field data into training 

datasets significantly improves prediction performance. Future research should explore different ML algorithms and 

hybridization strategies to enhance field concrete predictions. 

3- Starting with Simple Models: ML models can handle complex relationships, but simpler models are often sufficient 

and preferable when their performance is comparable to more complex ones. Simple models with fewer assumptions 

are more interpretable and reliable, especially when data quality is insufficient. Starting with simple, interpretable 

models and gradually increasing complexity is a good practice. 



 
4- Knowing When to Trust a Model: Concrete research typically uses the 2-sigma rule to validate experimental results, 

but this may not be reliable for ML models due to reproducibility issues. Reported performance measures should be 

interpreted cautiously, as model performance on test data may not reflect real-world performance. Detailed 

descriptions of models and their performance, including potential sources of uncertainty, are necessary. Trust in ML 

models is closely tied to their interpretability, which is a focus of ongoing research. 

 

3 Diverse Applications of AI and ML in Maintenance 

3.1 The Development of Maintenance and its Types 

 

The evolution of methodologies for assessing and predicting the durability and serviceability of concrete went through many 

phases. Historically, maintenance management has undergone significant advancements to ensure structural functionality and 

safety throughout the lifespan of concrete assets. The study categorizes maintenance strategies into four primary types: 

corrective, preventive, predictive, and prescriptive. Corrective maintenance is reactive, addressing issues as they arise or when 

failure indicators are observed. Figure 3 shows the shift in interest of concrete science over time. Preventive maintenance is 

scheduled at regular intervals to prevent potential failures. Predictive maintenance, a key application of AI and ML, leverages 

machine learning techniques, utilizing time-based data to forecast potential shortcomings. This approach is a game-changer, 

as it minimizes structural damage, reduces repair costs, and prevents operational downtime, demonstrating the practical 

benefits of AI and ML in the field [5,6]. Finally, prescriptive maintenance focuses on decision-making processes, offering 

strategies to proactively control and optimize maintenance activities, enhancing maintenance operations' overall efficiency 

and effectiveness. The role of AI and ML in this enhancement cannot be overstated, as they instill confidence in the audience 

about the technological advancements in the field. To this end, maintenance management is a systematic approach to planning, 

executing, and monitoring the upkeep of an organization's assets, equipment, facilities, or infrastructure. It includes a range 

of processes, strategies, and methodologies to ensure optimal performance, reliability, and longevity of physical assets, all 

while minimizing downtime and operational disruptions [7]. 

 

 

Figure 3: The Development of Maintenance and Maintenance Management with Time 

Central to this approach is predictive maintenance, which leverages AI and advanced analytics to anticipate 

potential failures before they occur. By proactively predicting and addressing issues, organizations can prevent 

failures, reduce maintenance frequency, and optimize resource use. This enhances the quality of maintenance 

and drives down costs, ensuring that assets are managed efficiently throughout their entire lifecycle.  

 



 
3.2 Artificial Intelligence and Predictive Maintenance 

AI is set to transform the maintenance of engineering structures, offering a more sustainable approach by 

significantly extending the lifespan of critical infrastructure like buildings and bridges. Traditional 

maintenance practices, which often rely on routine inspections and reactive repairs, are increasingly outdated. 

These inefficient methods can lead to higher costs and potential safety risks [8]. 

Predictive maintenance, powered by AI and machine learning (ML), is emerging as the superior approach [9]. 

By leveraging continuous learning models, IoT sensor data, and automated decision-making processes, AI 

enables the early detection of potential issues. This allows maintenance to be performed precisely when 

needed, preventing minor problems from escalating into significant failures. Moreover, the development of 

digital twins—virtual replicas of physical assets—enables more accurate simulations and analyses of 

equipment performance under various conditions, further enhancing maintenance planning and execution. 

This shift to AI-driven predictive maintenance reduces downtime and costs and ensures engineering structures' 

safety, reliability, and environmental sustainability. As AI continues to evolve, it will increasingly render 

traditional maintenance practices obsolete, establishing predictive maintenance as the new standard in the 

industry. Figure 4 demonstrates the evolution of engineering maintenance practices over time. 

 

 

 

 

 

Figure 4 The evolution of engineering maintenance practices over time. 

Predictive Maintenance leverages AI and ML to predict structural failures before they occur, minimizing downtime and 

reducing maintenance costs. Traditional maintenance strategies, such as reactive and preventive maintenance, often lead to 

unexpected failures or unnecessary maintenance actions. In contrast, predictive maintenance uses data from sensors, 

historical maintenance records, and operational parameters to forecast potential issues [10,11]. 

1. Data Collection and Integration: Modern equipment has IoT sensors that continuously monitor temperature, vibration, 

and pressure. AI algorithms integrate and analyze this data in real-time to detect anomalies. 

2. Failure Prediction Models: ML models are trained on historical data to identify patterns that precede equipment failures. 

Regression analysis, decision trees, and neural networks are commonly used. 

3. Proactive Maintenance Scheduling: Based on predictive insights, maintenance activities can be scheduled proactively, 

ensuring that interventions are timely and targeted, thus extending the lifespan of assets. 



 
3.3 Benefits of AI and ML in Concrete Maintenance 

 

Integrating AI and ML in the maintenance of concrete buildings and structures offers significant benefits, including cost 

savings through predicting failures and optimizing maintenance schedules, which reduces expenses related to labor, 

materials, and the utilization of assets. Figure 5 shows the projected impact of ML and AI on concrete maintenance cost. 

This technology enhances the reliability and performance of structures by ensuring they remain in optimal condition while 

also improving safety by detecting potential issues early and preventing catastrophic failures. AI and ML also support data-

driven decision-making, enabling better resource allocation and strategic planning. Moreover, predictive maintenance helps 

extend the operational lifespan of structures, maximizing their long-term value. 

 

Figure 5 Projected impact of AI and ML on Structure Maintenance Costs 

3.4 Challenges of AI and ML in Maintenance 

Despite the clear benefits, integrating AI in maintenance does come with challenges. Initial investments in technology, 

training, and infrastructure can be significant. Robust cybersecurity measures are also needed to protect the data and 

systems involved. While the benefits are substantial, integrating AI and ML into maintenance systems comes with 

challenges: 

1. Data Quality and Quantity: Effective predictive maintenance relies on high-quality data. Inconsistent or insufficient data 

can lead to inaccurate predictions. 

2. Integration with Existing Systems: Integrating AI and ML solutions with legacy systems can be complex and may require 

significant investment. 

3. Skill Gaps: Implementing AI and ML requires specialized skills. Organizations need to invest in training or hiring experts 

in data science and machine learning 

4. Security and Privacy: Using IoT devices and data analytics raises concerns about data security and privacy. Robust 

measures are needed to protect sensitive information. 

5. Initial Investment: Deploying AI and ML systems can be costly. Organizations must weigh the initial investment against 

long-term benefits. 

However, as AI technology advances and becomes more accessible, these challenges are expected to diminish. 



 
3.5 Current and Future Prospects and Trends 

The future of AI and ML in the maintenance and management of concrete structures and buildings is set to revolutionize 

the industry, offering increasingly sophisticated tools for ensuring structural integrity and sustainability. With advancements 

in AI algorithms and sensor technologies, predictive maintenance will become a cornerstone of infrastructure management 

worldwide. Edge computing will enable real-time data processing at the source, enhancing predictive capabilities and 

reducing latency. Digital twins will allow more accurate simulations and predictive analytics, improving maintenance 

planning and execution. Autonomous maintenance systems powered by AI-driven robots and drones will likely emerge, 

performing tasks with minimal human intervention. Collaborative AI will combine human expertise with AI insights, 

enhancing decision-making and maintenance strategies. Finally, AI and ML will be pivotal in developing sustainable 

maintenance practices, optimizing resource utilization, and minimizing environmental impact, paving the way for a safer 

and more sustainable built environment. Some of the current and future real-world applications: 

1. Manufacturing: Companies like Siemens and General Electric are using AI and ML for predictive maintenance in 

manufacturing plants, reducing downtime and increasing efficiency. 

2. Transportation: Airlines and railways use predictive maintenance to ensure the reliability and safety of their fleets. For 

example, Delta Airlines uses AI to predict and address potential aircraft issues. 

3. Energy Sector: AI-driven maintenance is used in power plants and renewable energy installations to predict failures and 

optimize performance. 

4. Oil and Gas: Shell uses ML algorithms to monitor and maintain drilling equipment, pipelines, and refineries. 

5. Smart Cities: Municipalities leverage AI to maintain water supply systems, street lighting, and public transportation 

infrastructure. 

4 Conclusions 

In conclusion, integrating AI and ML into concrete science and constructing concrete structures marks a significant leap 

forward in the industry. These technologies are not only revolutionizing research methodologies by enabling more intelligent 

and efficient analysis but are also critical in transforming the maintenance and management of infrastructure. AI and ML 

offer unprecedented opportunities for predictive maintenance, optimized resource utilization, and enhanced structural health 

monitoring, all of which are vital for extending the lifespan of concrete structures and promoting sustainability [12,13]. As 

these technologies evolve, the future of concrete science and infrastructure maintenance will become increasingly data-

driven, predictive, and autonomous, positioning forward-thinking organizations at the forefront of innovation and 

sustainability in a rapidly changing world [14]. 
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