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Abstract 

 

Recent urban development requires advanced utility management through modern 

technology implementation to optimize utility management with minimal risks. While 

commonly used, traditional methods are often time-consuming and prone to human errors, 

leading to inefficiencies. This research proposes a comprehensive framework that leverages 

advanced technologies, specifically Ground Penetrating Radar (GPR), Mask R-CNN Deep 

Learning Model, and Augmented Reality (AR), to automate and enhance the process of 

subsurface utility detection and visualization. The framework is validated through the 

implementation of a case study where data from GPR scans are processed to detect and 

visualize buried utilities. The case study demonstrates the efficiency of integrating deep 

learning techniques with GOR data, significantly improving the accuracy of utilities detection. 

On the other hand, the use of AR-enabled seamless visualization of these results, offering an 

interactive experience for field operations. This approach does not only reduce the risk of 

damaging existing utilities but also accelerates decision-making processes where the developed 

system demonstrates promising results, providing an efficient utility detection and 

visualization solution. 

Keywords: Ground Penetrating Radar; Mask R-CNN; Augmented Reality;  

1. Introduction 
 

The increasing complexity of urbanization and infrastructure development has directed 

the demand for precise mapping and detection of subsurface utilities to ensure efficient 

construction and maintenance practices. Traditional methods of subsurface utility detection 

often involve manual processes that are time-consuming, costly, and prone to errors. 

Subsurface Utilities, such as pipelines and cables, are essential infrastructure components that 

form the essence of modern society’s lifeline and play a pivotal role in society’s socioeconomic 

growth. Thus, maintaining and preserving the utilities is vital and becoming more definite. 

However, due to the population growth and density increase in municipalities, it is a necessity 

to upgrade existing utilities and relatively increasing utilities complexity where these 

construction or maintenance works could pose a great length of risk to existing utilities. 

In Egypt alone, the water network is estimated at 180,000 km, providing 33.6 million 

m3/day, while the sewage network is estimated at 55,000 km connected to Waste Water 
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Treatment Plants with an actual capacity of 13.7 million m3/day [1]. Moreover, the lengths of 

cables were estimated at 604,956 km in 2021, with an increase of 2.2% from the previous year 

[2]. Whilst these figures do not include Fibre Optic and Gas networks, they highlight the 

complexity of subsurface utilities and the critical need for proper maintenance. Thus, congested 

utilities and the demand for upgrades or new installations make this task challenging promotes 

effective detection, mapping, and visualization methods that is essential to minimize risks like 

service disruptions, safety concerns, and regulatory impacts. These challenges have led to the 

adoption of advanced technologies such as Ground Penetrating Radar (GPR) for accurately 

detecting and mapping utilities, ensuring informed decisions in planning and construction. 

GPR has emerged as a valuable technology in utility management by offering a non-

destructive and efficient investigation of subsurface utilities by accurately identifying 

subsurface utilities of various materials at various depths. The fundamental operating principle 

of GPR involves the transmission of electromagnetic pulses into the ground and the reception 

of the reflected signals, which have penetrated the subsurface and are reflected with an 

amplitude that varies based on the dielectric properties of different materials that caused the 

reflections. By processing the recorded signals, a detailed cross-sectional image of the 

subsurface, also known as radargrams, can be generated [3], [4]. The process of operating 

principle is completed using several instruments, which are listed as follows: a transmission 

antenna that emits radar pulses, a recipient antenna to receive reflected signals, a control unit 

that manages the timing of pulse generation and processing reflected signals and a data 

recording device to store the collected information for further analysis [5]. 

Furthermore, GPR data analysis involves interpreting the collected signals to create 

radargrams by defining the characteristics of reflected signals and correlating them and 

enhancing the signal quality by applying time-slice analysis and various filters – will be 

discussed thoroughly in the following chapters – to obtain valuable information for mapping 

and locating subsurface utilities [4], [5]. Jaw and Hashim [6] have categorized GPR technology 

into two categories, namely: traditional GPR configured in “look-down” mode and in-pipe 

GPR configured in “look-out and look-through” mode. Traditional GPR consists of three main 

types:  

 

1. Time domain: uses short electromagnetic pulses and measures the time for signals to 

reflect back, 

2. Frequency domain: consisting of Frequency Modulated Continuous Waveform 

(FMCW), Stepped Frequency Continuous Waveform (SFCW), and Noise Modulated 

Continuous Waveform (NMCW), each utilizing different frequency variations for 

enhanced subsurface analysis, and 

3. Spatial domain: uses fixed frequencies for shallow investigations, often applied in 

concrete assessments. 

 

Generally, GPR systems use a transmitter antenna to broadcast radio waves (10 MHz–1.5 

GHz). Higher frequencies provide better resolution but less depth. The signal travels through a 

medium until it either attenuates or hits an object, reflecting back to the receiver antenna, which 

records the signal’s amplitude and duration. A time management unit coordinates the signal 

generation and detection by synthesizing time domain responses using the frequency domain. 

[7], [8], [9]. This principle is applied to all GPR configurations which are namely Reflection 

Profiling, Common Midpoint or Common Depth Point, Wide Angle Reflection and Refraction, 



 

and Trans-illumination. The GPR principle prompts for a non-invasive method for detecting 

subsurface objects without digging or drilling, making it ideal for preliminary surveys and 

minimizing the risk of damage to utilities and structures. It provides high-resolution imaging, 

detecting small, shallow objects in detail. The technology enables real-time data acquisition 

and processing, allowing for immediate interpretation and decision-making, which is especially 

useful in time-sensitive projects. 

 

Recent advancements in GPR technology focus on improving data processing, interpretation, 

and integration with other geospatial technologies by developing multi-frequency antennas to 

enhance the accuracy, efficiency, and usability of GPR in various applications. Moreover, 

integrating GPR data with Geographic Information Systems (GIS) and Building Information 

Modelling (BIM) allows for more comprehensive mapping and management of subsurface 

utilities and infrastructure and provides a comprehensive view of the built environment. 

2. Proposed Framework 
 

The proposed framework aims to address challenges related to the complexity of interpreting 

GPR data and interpretation visualization by leveraging GPR data and deep learning 

techniques, especially the Mask R-CNN model, for the automatic detection of buried utilities. 

Furthermore, the framework utilizes AR for the visualization of processed detections obtained 

from the trained model. This innovative approach combines the strengths of GPR, deep 

learning, and AR to provide a comprehensive solution for utility detection and visualization. 

The proposed approach integrates the GPR raw data, which represents the reflected signals 

from subsurface utilities, and leverages the unique ability of GPR to detect both metallic and 

non-metallic utilities. Furthermore, the raw data is introduced to modules for data decryption 

and further processing and filtering.  

 

Due to the complexity of GPR data interpretation, deep learning techniques are utilized to 

automate the interpretation by using a supervised learning and segmentation model that is 

effective in pattern recognition tasks. To achieve this target, the framework utilizes Mask R-

CNN, a state-of-the-art deep learning model, for pixel-level detection and segmentation of 

hyperbolic and attention change features in GPR data indicating the presence of buried objects. 

The detected objects are then visualized using AR technology that merges real and virtual 

worlds to produce a new environment where physical and digital objects co-exist and interact 

in real-time. Thus, allowing an immersive visualization and enhancing the understanding and 

interpretation of the results. Hence, the purpose of the proposed framework is to automate 

subsurface utilities detection and visualization by targeting two main objectives: 1) identify, in 

an automatic technique, buried utilities using GPR data, and 2) visualize processed detections 

obtained from the trained model using Augmented Reality. The first objective is achieved 

through utilizing the modern deep learning model, Mask R-CNN, for pixel-level detection and 

segmentation of hyperbolic features indicating existing utilities. This is achieved by executing 

the following stages: 1) GPR data collection and processing, 2) Mask R-CNN model training 

and inference, and 3) Object Detection and post-processing. 

 

 



 

Moreover, the AR visualization process involves project setup, scene design, spatial mapping 

and interaction, anchoring and tracking, User Interface (UI) and visual effects, and HoloLens 

features integration. Figure 1 illustrates the proposed framework stages and processes, which 

are explained to provide a comprehensive understanding of their processes and their 

significance in achieving the proposed framework’s objectives. 

 

 
Figure 1: Proposed Framework Flowchart 

The data collection and processing stage within the proposed framework serves as the 

foundational stage upon which the subsequent stages’ analysis and interpretations are built. It 

involves a series of stages to extract the most insights from the GPR data (see Figure 2). This 

stage involves GPR data collection, representing subsurface objects and voids based on signal 

attenuation. The process begins by scanning known utility locations and cross-referencing with 

as-built data. Key factors such as antenna frequency and time window selection optimize depth 

and resolution. 

Raw data decryption follows, as GPR devices store proprietary signal data, a custom decryption 

algorithm converts the data into a usable format. Data from multiple GPR sensors is then 

merged using a spectral forecast algorithm, ensuring uniform sampling rates. Afterwards, 

processing is performed, including noise filtering, signal correction, and SNR-based filtering, 

to enhance data quality and reliability, ultimately generating B-Scan images for further 

analysis. 

 
Figure 2: Data Collection and Processing Process. 
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The second stage of the proposed framework involves training a Mask R-CNN model for object 

detection and instance segmentation by extending Faster R-CNN with a segmentation mask 

branch for each Region of Interest (RoI). This stage provides a trained model for future projects 

and includes several key processes (see Figure 3).  

 

First, a database of training, validation, and testing datasets is created, with labels for masks 

indicating regions of interest in B-Scan images, formatted in COCO JSON [10], which contains 

signatures mask coordinates, labels category, and bounding box coordinates. The annotated 

data is split into training and validation sets, with the former used for training and the latter for 

model evaluation and tuning. Before training, the following processes are considered: 

- Model selection: ResNet-50 is chosen for its balance of performance and complexity, 

- Model Configuration: the model is set for four classes (hyperbola, other objects, noise, 

and background) with additional parameter configurations. 

 

While incorporated processes during the training are allocated involves: 

- Transfer learning by utilizing pre-trained weights from the COCO dataset is used to 

initialize the model for faster convergence, 

- Data augmentation, which involves techniques like cropping, scaling, and brightness 

adjustments, are applied to prevent overfitting and expand the dataset and 

- Training metrics, which are built-in functions to monitor Total Loss and accuracy. 

 

Based on the best-trained model, acquiring detected objects is performed on obtained data and 

undergoes postprocessing to remove duplicated masks located within the same region using 

Non-Maximum Suppression (NMS). 

  
Figure 3: Mask R-CNN Training and Inference Process 

 

The third stage enhances detected objects, translating model detections into actionable spatial 

point clouds for user visualization (see Figure 4). Since the inference for object detection is 

performed on multiple filtering configurations for each profile, the first step in this stage is 

obtaining common features across multiple filtering configurations that are merged into one 

image by generating a binary instance matrix based on coordinates, removing instances that 

don't meet a repetition threshold. 



 

The following step aligns all profiles, ensuring they share the same start and end points using 

Common Feature Extraction, adjusting each profile based on a reference. Post-processing 

removes masks that don’t meet repetition thresholds to minimize false positives. The filtered 

masks are then converted into a binary matrix, where each active cell is translated into 

coordinates, factoring in depth (wave travel time) and profile spacing. This creates a 3D point 

cloud representing detected utilities. Finally, model evaluation is performed using the mean 

Intersection over Union (mIoU) method. 

 
Figure 4: Feature Extraction Process 

The final stage visualizes the object detection output and point cloud database through AR, 

involving several processes (see Figure 5). Initially, appropriate software and hardware are 

selected to ensure compatibility, using MS HoloLens [11] and Microsoft’s Mixed Reality 

Toolkit (MRTK) for Unity [12]. This setup aids cross-platform AR app development while 

ensuring seamless integration of core functions. 

 

The next step involves designing the virtual scene using Unity Scene View to position models, 

cameras, and lighting. Spatial mapping with HoloLens uses embedded cameras and sensors to 

create a 3D model of the physical environment, enabling interactions between virtual and real-

world objects. Visual effects and user interface enhancements, such as floating control docks 

and informational text, increase realism and immersion. Finally, HoloLens features like gesture 

recognition and voice commands are integrated to boost interactivity and user engagement. 

 

 
Figure 5: Augmented Reality Visualization Process 



 

3. Case Study 
 

The proposed framework is applied in a real-life case study to demonstrate its practicality and 

effectiveness in Mostakbal City, New Cairo, Egypt (see Figure 6). The city is planned over 

5,200 acres across three phases. The focus is on the first phase (1,490 acres), where most utility 

construction was completed. The implementation follows the model development stages: 1) 

Data collection and processing, 2) Mask R-CNN model training and inference, 3) Object 

detection and post-processing, and 4) AR implementation. Each stage employs appropriate 

tools and software. The second and third phases cover 1,607 and 1,875 acres, respectively, 

serving residential areas and regional service centres. 

 
Figure 6: Mostakbal City Location 

3.1. Data Collection and Processing 
 

The data collection process for the model implementation involved the use of an IDS RIS MF 

Hi-MOD GPR system with two antennas. The first one is 400MHz to provide high penetration 

depth while the second one is 2,000MHz to provide high resolution for shallow depths. These 

selections were based on the as-built utilities located at the scanned areas, which are set as a 

reference for data annotation which showed that utilities such as water main and irrigation main 

are within a depth of 2.50-meter, gas lines within 2.0 meters, and electric duct banks within 

1.20 meter. At the same time, some other sub-main utilities are located within 1 meter. The 

GPR system scans various sites within phase one of Mostakbal City for two purposes: 1) to 

obtain training and validation data for Mask R-CNN model training and 2) to acquire unseen 

data for measuring the framework's performance and complete implementation, including AR 

visualization. A total of 114 profiles are scanned and divided into two sets. The first set 

comprises 54 profiles, averaging 30 meters, in areas with congested utilities for training and 

validation. The second set consists of 60 profiles, averaging 20 meters, featuring two duct 

banks for performance measurement and full framework application. Figure 7 provides a 

schematic of buried utilities at the case study site. 



 

 
Figure 7: Schematic Representation of Buried Utilities at Case Study Location 

Raw Data Decryption process involves converting raw GPR data into a format suitable for 

processing and interpretation. Each GPR hardware vendor provides proprietary software for 

data decryption, but this limits third-party processing. By reverse-engineering the IDS RIS 

format stored in *.DT files, data decryption becomes possible. The process starts by reading 

the file's header to determine scan parameters, then extracting data from the data section using 

a HEX editor to understand its format and address ranges (see Figure 8). 
 

 
Figure 8: Snippet Sample of The Header and Raw Data Sections 

The data fusion process combines multiple data sources to produce more consistent and 

comprehensive information than a single source. It starts with signal resampling, which is 

crucial for integrating GPR data from sensors with differing frequencies. Resampling 

standardizes the temporal domain, enabling dataset integration and comparison by adjusting 

signals to a common frequency using Python’s Scipy library's "signal.resample" function. 

The resampled dataset is organized into a structured format with trace count, time window, 

positions, and frequency characteristics, enhancing data accuracy and reducing redundancy. 

After obtaining and decrypting the scan data, data processing enhances the signal-to-noise ratio 

and minimizes distortions for efficient interpretation. The preprocessing begins by applying 

noise filters to remove unwanted signals, including system noise between antennas, wave 

interference, material reflections, and external EM interference. Wavelet transform and A-Scan 

analysis use: 

• Low Amplitude Filtering: Utilizes "low_pass_filter" to eliminate signals outside 

specific amplitude thresholds. 



 

• Dewow Filtering: Suppresses low-frequency noise and removes long-term drifts caused 

by external factors. 

3.2. Mask R-CNN Model Training and Inference 
The second stage of the framework involves utilizing deep learning to interpret GPR data 

automatically. The processes involved in the deep learning integration stage start with data and 

deep learning model preparation and training the model while incorporating data augmentation 

and transfer learning and using the trained mode to provide object detection through inference 

and post-processing of the output detected objects. The processes of Mask R-CNN training and 

inference, along with their inputs and outputs, are listed in Table 1.  

Process Input Output 

Mask R-CNN Data 

Preparation 

B-Scan images of fused datasets with different 

filtering configurations for each profile. 

Training and Validation 

database. 

Model Preparation 

and Training 

Training and Validation Database. Trained Mask R-CNN 

Model. 

Inference and post-

processing 

Testing dataset. Processed segmented 

instances detection. 

Features Extraction Detected objects of all profiles' filtering 

configurations. 

Binary instance array for 

each profile. 

Profiles Alignment B-scan of each profile Shifted B-scans with 

aligned profiles. 

Point Cloud 

Generation 

Shifted B-scans with aligned profiles and thier 

features. 

Point cloud with pixel 

reduction. 

Table 1: Mask R-CNN Model Training and Inference Processes Input and Output List 

3.2.1. Data Preparation 
The data preparation process includes dataset processing, data annotation, and database 

generation. Although dataset processing is redundant for this model, it's useful for external 

datasets using B-scans with padding or titles, as data augmentation could impact training. Data 

annotation is done using Makesense.ai, a free, open-source web app that supports multiple label 

types like bounding boxes, lines, and polygons. Annotations can be exported in formats like 

VGG JSON or CSV. Once data annotation is complete, model preparation begins by selecting 

and configuring the appropriate model. Mask R-CNN is chosen for its configurability and 

pixel-level object detection capabilities, and ResNET-50 is chosen as its base architecture for 

efficiency and performance. The result is a trained model ready for analysis to identify the best-

performing configuration. The training process spans 100 epochs, starting with initial transfer 

learning using a COCO-trained model. Additional transfer learning occurs after epochs 60 and 

80, accounting for the spikes in the learning curve shown in Figure 9. 



 

 
Figure 9: Model Training Loss and Validation Loss 

3.2.2. Inference and Detections Post-processing 
During training, each epoch includes a training and validation loss function. Epoch run 

time is calculated from the processor time difference between start and end. These metrics 

assess model performance, with lower loss values indicating better performance. Plotting these 

metrics visualizes convergence and helps identify the lowest validation loss without overfitting 

(see Figure 10). The first three epochs of each transfer learning stage are removed to manage 

spikes. The assessment utilized Equations (1) and (2) to show that model 93 is the best-trained 

model. 

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑆𝑐𝑜𝑟𝑒 =  
𝐿𝑜𝑠𝑠 + 𝑉𝑎𝑙_𝐿𝑜𝑠𝑠

2
 (1) 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑀𝑒𝑡𝑟𝑖𝑐 = (1 − 𝑤) ∗ 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑆𝑐𝑜𝑟𝑒 + 𝑤 ∗
1

𝐸𝑝𝑜𝑐ℎ 𝑇𝑖𝑚𝑒
 (2) 

Model 93 detects utility locations using a function that applies trained weights, 

generating masks on radargram images through: 

1. Reading radargram images. 

2. Running the object detection function for mask instances. 

3. Exporting detected masks as arrays for post-processing. 

Accordingly, the post-processing involves three steps: 

1. Mask Refinement: Retain masks meeting thresholds across configurations, 

generating a binary instance array. Masks not meeting thresholds are removed, 

producing one binary instance array per profile (Figure 11). 



 

2. Profile Alignment: Align profiles to common start and end points by setting a 

datum profile, extracting features, determining reference points, and applying 

shifts. Metallic tapes in data collection marked profile boundaries for alignment. 

3. Pixel Reduction and Point Cloud Generation: Reduce pixels to enhance AR 

model performance and generate a point cloud. 

Table 2 illustrates the process utilized to perform post-processing on obtained masks while 

Table 3 illustrates the point cloud generation process. 

 

 
Figure 10: Model Preparation and Training Process 

 

Figure 11: Feature Extraction and Retention of Valid Masks 



 

Input 

Detected objects obtained for each configuration for each profile 

 
Sample of detected objects of a profile’s configurations. 

 

Proces

s 

1- Cross-reference each profile for proper alignment. 

2- Check mask occurrence and keep masks that meet the threshold.  

3- Get a binary array of masks for each profile. 

Output 

Binary mask filtering only regions of interest. 

 
Sample of filtered binary masks. 

 

Table 2: Inference Post-processing Process 

 

 

Input Filtered binary mask for each profile. 

Process 
1- Perform pixel reduction. 

2- Convert each pixel location into a point in a 3D space. 

Output 

Point cloud of the processed detected objects’ masks. 

 
 

Table 3: Point Cloud Generation Process 

 



 

3.3. Augmented Reality Visualization 
The stage includes the use of several tools and preparation that are crucial for the 

development of the application, the development requires the installation of a number of 

software packages (e.g., Adobe Illustrator, Visual Studio, Unity Hub, etc.) to configure the 

project for AR by setting MR project, scene, and UWP Capability settings, creating a Main 

Camera with attached scripts for user interaction (see Figure 12). Subsequently, the next step 

involves creating objects that match the application's wireframe (see Figure 13). These objects 

serve as the application's front-end, with scripts providing back-end functionality, which 

involves designing and applying VuMarks as materials to game objects (see Figure 14). This 

results in objects and user interface shown in Figure 15. The final stage involves building and 

deploying the AR application to the HoloLens, as depicted in Figure 16. 
 

 
Figure 12: Project Configuration 

 

 

Figure 13: Planning Scene Using Wireframe 

 

 

Figure 14: VuMark Employed in The Research



 

 
Figure 15: AR Application Scene Components 

 

 

a) Initiation of The Application b) Initiating Loading of 

Point Cloud 

 

 

c) Application UI After Loading Point Cloud d) Visualizing Point Cloud 

Coordinates Data 

Figure 16: Building and Deploying the AR Application to the HoloLens 

 

 

 



 

 

4. Conclusion 
 

This research proposed a novel framework that integrates deep learning techniques and 

augmented reality to automate the interpretation of GPR data to detect and visualize subsurface 

utilities in urban environments. The framework addresses the increasing complexity of 

infrastructure development and the demand for precise mapping and detection of subsurface 

utilities, minimizing interruption of services and maintaining high service quality to mitigate 

socioeconomic impacts. The framework is shaped to address the purpose of the research, to 

reduce manual intervention by automating the process of subsurface utility detection accurately 

and in the most efficient way, elevating the current practices to meet modern technologies. The 

framework addresses the traditional methods of visualization of the subsurface utilities by 

integrating augmented reality to enhance the visualization and provide users with a more 

intuitive and immersive understanding of the results. Thus, it explores the potential of 

combining advanced technologies to revolutionize the current methods of subsurface utilities 

detection and mapping, which improve decision-making processes while ensuring the safety 

and efficiency of subsurface utilities management.  
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