
Through the recent digitalization of the industry and the use of technologies and ideas
from Industry 4.0, maintenance tasks have altered. Companies are now able to
develop knowledge about the production system's present and future health state by
connecting to and talking with it, which enables more effective control over the
machinery. Predictive maintenance is a technique whose objective is to minimize
unscheduled downtimes and efficiently arrange maintenance tasks before faults and
stoppages occur. Several Artificial Intelligence (AI) data analysis tools have been
presented in recent decades to construct a prescriptive maintenance system that will
aid with the autonomous choice in order to better assist this work. In order to
comprehend how artificial intelligence algorithms are affecting maintenance policies
and to analyze their implications in strategies, we investigate the state-of-the-art
technologies in the prescriptive maintenance system in this study. The findings are
compiled in a thorough database that offers illustrations of how to adopt maintenance
policies based on descriptive, predictive, and prescriptive analytics using concepts
and empirical evidence from the literature. The goal of this study, which is the first in-
depth inquiry of these research subjects, is to provide a deeper understanding and
awareness of current trends and major challenges while highlighting important
aspects and barriers to the adoption of novel policies. Keywords: Intelligent
maintenance system, artificial intelligence, prescriptive maintenance. 

Autonomous Decision Support Based on Artificial
Intelligence Techniques for Maintenance Processes 

Due to changes in the manufacturing production planning and control systems, the
area of maintenance management has come under growing strain. Plant
management has recently been faced with challenges to productivity and quality
unprecedented in corporate history. The maintenance department is crucial to
achieving higher levels of productivity and quality in order to continuously reduce
costs and support a more dependable and long-lasting operation. New condition-
monitoring technologies have since emerged, and they are anticipated to enhance
maintenance procedures by lowering costs and enhancing the availability and
dependability of the equipment. Since many of these technologies are still in 
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their early stages of development, it is important to assess the projected benefit for the 
operation process at each stage of technical maturity and to create appropriate maintenance 
strategies that take these newly discovered insights into account. Although there are methods 
for aiding decision-making processes, most of them have the following drawbacks: 
• Consider conventional preventive maintenance techniques. 
• Use-case specific (unique difficulties) and not easily transferable to other problem 

categories. 
• Currently used predictive maintenance techniques frequently overlook autonomous 
decision support. A key building block for creating intelligent cyber-physical
maintenance systems that are capable of taking independent decision-supporting
activities is artificial intelligence practice. 

Future factories that integrate production planning and prescriptive maintenance will have
maintenance plans that are more adaptable, customizable, and resilient. 

 Several studies on maintenance methods with a data analytics focus have been done in
the last ten years. A substantial body of literature addresses issues, such as enhancing
availability by forecasting the condition of equipment using historical and current data as
well as expert knowledge. In their evaluation of a large body of research on prognostic-
based decision support for condition-based monitoring, Bousdekis et al. [1] offered a
useful way for efficiently identifying and choosing the best combinations of techniques,
including data- driven approaches. A variety of Deep Learning-based techniques have
been researched as alternatives to manual feature engineering. Convolutional Neural
Networks, for instance, have been used to identify structural deterioration and detect
defects in rotating machinery [2]. However, both approaches have been evaluated in
simulated environments, which shows that Deep Learning is still in its infancy and
requires further systematic research (e.g., standard datasets, insight into black box
models, transferring models, imbalance in training data, etc.) before it can be applied in
the field of prescriptive maintenance (PsM) [3]. Additionally, Wöstmann et al. [4]
investigated how well-established predictive maintenance technologies may be applied
to production systems while considering a number of requirements for a successful
implementation. In the literature on maintenance, knowledge- based decision support
strategies for PsM are a new trend. This area has not yet been thoroughly investigated.
The process of finding, comprehending, and communicating maintenance data was
covered by Karim et al. in their discussion of maintenance analytics [5]. A
comprehensive strategy that incorporates modelling of data, knowledge, and context is
required to design a maintenance analytic-based decision support solution [6]. PsM also
refers to recent developments in enhancing self-organization and self-direction
capabilities of cyber physical production systems (CPPS), which in theory aim at
machine self-diagnosis and scheduled maintenance [7]. Condition-based maintenance
or predictive maintenance 

2. Literature Review 



(CbM/PdM) enhances condition monitoring by employing statistics, stochastics, simulation-
based, data-analytics, and even machine learning algorithms, which allow making failure
predictions. Prescriptive maintenance may therefore mature to its full potential, involving
sophisticated techniques to foster and strengthen capacities for adaptation and
optimization [8]. Not only can PsM forecast the system's future health condition, but it may
also suggest autonomously timed judgments for maintenance chores (inspection, repair,
and replacement) or action plans. As a result, PsM mandates the incorporation of a decision
support system that prescribes and approves specific maintenance action plans that can be
carried out automatically or manually. In this regard, PsM exemplifies the self-organization
and self-direction capabilities of CPPS [9] while also keeping the operators informed by
asking them to monitor the status from AR-based monitoring tools, check the available
windows for maintenance planning, and choose whether to immediately call for augmented
reality (AR) remote maintenance or schedule maintenance tasks for a later time [10]. PsM
systems will eventually develop into autonomous digital orchestrators that schedule
maintenance jobs in line with production plans, whereas in this application a human
operator mediates and serves as a decision agent in a CbM/PdM environment [8]. While
there has been a lot of study on techniques to integrate planning areas (such as production,
maintenance, and quality) [11,12], novel maintenance strategies like PdM or PsM are
typically lacking a global smart factory perspective and are not yet fully developed from a
PPC standpoint. This connection would have a big impact on material planning, reducing
waste from unanticipated tool failure/degradation [14], increasing energy efficiency [15],
and minimizing the impact of remanufacturing on schedules [16]. The majority of research
focuses on allocating suitable time frames for maintenance tasks [17]. For example,
production scheduling and preventive maintenance have been combined in decision models
to account for demand unpredictability [18]. Only a few models, meanwhile, focus on either
CbM for resolving various job-shop scheduling issues [20] or on periodic maintenance [19]
to record and use feedback data from the shop floor. Few research has recently begun to
examine the relationship between PPC and PdM, for example, for job-shop scheduling
based on degradation rates and projecting failure moments [21], but the promising
relationship with PsM has not yet been examined. As a result, the discussion below
identifies two holes that provide inspiration for the current research:

• PPC cannot afford to disregard the most recent advancements in data-driven 
maintenance strategies, such as PsM, which must be incorporated in real-world case 
studies from an application- and technology-focused standpoint. To this purpose, 
additional research is still needed on data interoperability, evaluation of potential 
production maintenance scenarios, and knowledge discovery and preservation. 

•A factory's planning complexity and technological readiness level greatly influence
the design decisions for an integrated PsM-PPC decision support system (and its
successful implementation in an actual production environment) (concerning, e.g.,
available ICT infrastructure, data accessibility, availability, and quality as well as staff
qualifications). Application studies are therefore required to evaluate and talk about
the difficulties and technological problems resulting from actual use cases.



 

The greatest level of knowledge-based maintenance (KBM) in terms of complexity
and maturity is known as prescriptive maintenance [22]. KBM presupposes that
holistic assessment of production processes, as opposed to atomistic inspection of
(all) influential components, results in competitive advantages for stabilizing
maintenance operations and lowering unexpected costs [22, 23]. As a result, KBM
focuses on examining maintenance as a non-isolated sub-domain of production
systems, which in turn affects the development of organizational value [23]. Recent
studies have revealed that the sub-domains of production planning, maintenance,
and quality management interact strongly and collectively impact the attainment of
the intended production performance, equipment availability, and product quality
[24, 25]. Through careful examination of maintenance repercussions, system
circumstances, organizational structure, and processes, KBM's primary goal is to
build a general concept for optimizing maintenance processes [23]. The following
categories can be used to classify current methods for fulfilling KBM objectives (see
Fig. 1) [22]: 

This study's objective is to provide the state-of-the-art in intelligent maintenance
systems based on approaches that can influence maintenance policies, including
descriptive, predictive, and prescriptive approaches, and to examine how these
approaches may be applied to innovations. To do this, a review of recent publications in
the literature was first required. This allowed the authors to pinpoint knowledge gaps
and provide solutions for our goal of determining how descriptive, predictive, and
prescriptive approaches are strengthening traditional maintenance practices. To the
best of the authors' knowledge, there are currently no studies in the literature that
explore the cutting-edge descriptive, predictive, and prescriptive methodology used in
maintenance policies. Finally, by highlighting important characteristics and drawbacks
for the adoption of novel policies based on descriptive, predictive, and prescriptive
approach, the study offered in this paper aims to produce a deeper understanding and
knowledge of current trends and significant challenges. 

3. Study Aims 

4. Knowledge-Based Maintenance Strategies 

Descriptive maintenance provides details on earlier maintenance procedures in
response to the question "What happened?"
Diagnostic maintenance examines cause-and-effect relationships, provides
further technical information regarding previous maintenance operations, and
provides an answer to the query "Why did that happen?"
Predictive maintenance forecasts future events using historical maintenance
data, possibly in real-time, to answer the question "What will happen when?" The
terms "Smart Maintenance," "Data Driven Maintenance," and most recently
"Maintenance 4.0" are also used to describe this.



 Because industrial maintenance tasks are inherently complicated, academics are
increasingly turning away from more straightforward technological fixes in favor of more
sophisticated strategies based on AI to address a variety of maintenance and evaluation
difficulties. Artificial intelligence, often known as machine intelligence, refers to a
machine's capacity for learning and problem-solving. It can serve as a catalyst for
several advancements and cutting-edge technologies in the rail sector. Examples of
areas where AI is used include pattern recognition, image processing, diagnostics,
remote sensing, process planning and optimization, decision-making, and system
control [26–28]. Machine learning (ML) offers powerful capabilities for adopting
predictive maintenance and making significant financial savings. With AI-based
predictive maintenance, availability can increase by up to 20% while inspection costs
and yearly maintenance expenditures are reduced by up to 25% and 10%, respectively
[29]. High uncertainty and numerous components that are frequently difficult for
engineers to pinpoint directly are two characteristics that define maintenance
challenges. 

Prescriptive maintenance provides actionable advice for decision-making and
enhances and/or optimizes upcoming maintenance operations to address the
question of "How can we make it happen?" or, alternatively, "How can we
control the occurrence of a given event?" It also refers to recent improvements
made to the CPPS's self-organization capabilities, which ideally aim to facilitate
planned maintenance and machine self- diagnosis. 

Fig. 1: Knowledge-Based Maintenance Strategies [22] 

5. Artificial Intelligence in Maintenance 



Additionally, due to developments in information technology (IT), the volume of digital data
gathered from maintenance tasks has substantially expanded over the past few decades.
These data can be mined for possible predictive and prescriptive knowledge utilizing AI
techniques. It has been shown that AI can monitor systems, diagnosing faults, identifying
acoustic emissions, and performing predictive maintenance [30–32]. Data accessibility and
the application of machine learning algorithms to maintenance tasks have the potential to
increase productivity and lower maintenance costs [33–35]. The machine learning approach
can offer a way to gain the knowledge required to make predictions and judgments by
learning from past or present data [36–39]. To diagnose the technical status of the systems
and track them using the online mode (in real time), AI systems can be used. Furthermore,
faulty system components can be found using an artificial intelligence system. Iterative
training of the neural network's input data is possible in both supervised and unsupervised
learning environments. Through supervised learning, predictions regarding the
component's health status can be made in the future using previous or current data. On the
other hand, in an unsupervised learning environment, the data collected is typically trained
to confidently recognize and identify significant traits or trends related to component
health and failure. The creation of intelligence systems for the early detection of flaws or
mechanical issues prior to failure is the current area of research attention. This provides
equipment remote diagnosis, real-time defect detection and diagnosis, and predictive
maintenance. Additionally, artificial intelligence serves as the foundation for robotic
systems that can help with assembly operations, maintenance, and repair works. In some
system industries, AI can be used for predictive maintenance [40]. AI will also improve the
reliability of the systems and reduce failure rates. Over time, data can be gathered from the
measurements and used to train AI algorithms. Predictive models can be created using
historical data trained to forecast system behavior in the future. Data mining and machine
learning were used to apply predictive maintenance, according to Kalathas and
Papoutsidakis [41]. The study's findings point to the suitability of using machine learning to
achieve preventive maintenance. According to Famurewa et al. [42], maintenance analytics
can improve e-maintenance and decision-making. Not many works have been reported on
the development of predictive maintenance based on AI. As a result, this study's principal
objective is to advance maintenance activities in the rail industry. The combination of AI
and technology for predictive maintenance is shown in Figure (2). The image demonstrates
how artificial intelligence can be used for proactive maintenance. Before a predictive model
can be produced for making future predictions, an AI algorithm can be trained.



Without making any presumptions, ML algorithms [43] can identify potential correlations
between pieces of information [44]. Several supervised learning machine learning (ML)
algorithms are now available that enable the creation of predictive models from
historical data, each with specific benefits and drawbacks [45]. ML approaches are
frequently used to diagnose faults in assets by spotting aberrant conditions. Most of the
time, bad circumstances aren't immediately apparent; instead, they're shown by their
symptoms, including increased vibration and rising temperature, which can be
monitored by sensors. The performance of an ML model can be considerably impacted
by the choice of an appropriate type of data that best represents the target fault.
Mechanical, hydraulic, and electrical data are the three primary data kinds that are
frequently utilized to identify system states, according to the literature. System
mechanical data, including vibration, speed, and temperature, are important for fault
diagnosis because they show the health of various system components. The most
common mechanical data utilized for identifying a variety of issues is vibration [46]. In a
digital twin, data analytics is essential (DT). Machine learning technology is described in
this section as a potential key actor in the data analytics part of DT enabled PdM. A
system or machine's health state can be understood and recognized through fault
diagnostics (such as anomaly detection and faults categorization) based on historical
and current condition monitoring data [47]. Manual diagnosis techniques took a long
time and required a lot of expertise and experience. Artificial neural networks (ANN),
support vector machines (SVM), and decision trees are examples of machine learning
techniques that have opened the way for a higher level of automation in machine
maintenance and a more precise problem diagnostic procedure [48]. Machine learning
algorithms learn from labelled data with the goal of automatically identifying and
categorizing faults. An algorithm would be used to identify problematic conditions and
proactively predict future failures based on real-time condition monitoring data after
being trained typically on past data. Deep learning, a branch of machine 

Fig. 2: Integration of AI and predictive maintenance technologies. 

6. Predictive and Prescriptive ML Algorithms 



7. Prescriptive Analytics for Maintenance 

learning, differs from typical machine learning in that it doesn't rely on human
input but instead uses a neural network to continuously study the data to
increase prediction accuracy [49]. The pre-processing of raw data is necessary for
traditional machine learning techniques like SVM and Random Forests before
training and learning. Accordingly, data preprocessing and algorithm creation are
the two processes involved in defect diagnosis utilizing conventional machine
learning techniques. The number of data that has been collected has significantly
risen because to developments in ICT and the Internet of Things (IoT), making it
possible to use more precise problem diagnostic methods [50]. Traditional
machine learning techniques, nevertheless, fall short when it comes to evaluating
such large data sets with a diversity of data kinds (volume, velocity, variety, and
veracity). Deep learning, a new advancement in machine learning, is built using
hierarchical neural network topologies that can handle and process large
amounts of data [51]. Through the elimination of pre-processing, feature
extraction, and feature selection, this method streamlines and expedites the fault
diagnostic prediction process. Importantly, this approach decreases human error
in defect identification and does away with the necessity for signal processing
knowledge [52].
 

According to its definition, prescriptive analytics is a mathematical technique that
uses computing to identify a collection of highly valuable activities or decisions.
Decisions are made based on a wide range of goals, restrictions, and needs that
help a certain sector work better [53]. Prescriptive analytics uses mathematical
models to combine the usage of models, rules, and data with hybrid data and
rules. It assists in resolving issues with Big Data, operational research, decision
support systems, and optimization in the maintenance sector [54]. To make
better decisions in prescriptive analytics, statistical and mathematical procedures
are integrated with optimization techniques [55]. Prescriptive analytics explains,
describes, and forecasts how to advise future courses of action. To accomplish
the aim with better objectives, this improves the applications and company. The
prediction result is connected to the decision alternative. Prescriptive analytics
employs simulations and optimization to improve decision-making. The five main
pillars of prescriptive analytics are represented in Fig. 3:

•     Adaptive algorithms: As the volume, velocity, and diversity of data increase
quickly, prescriptive analytics technology should be able to produce new
protocols and automatically recalibrate all its built-in algorithms. To support the
business process that is being handled continuously, this whole recalibration
needs to be adaptive—dynamic and/or continuous.
•     Integrated predictions and prescriptions: Predictive analytics' guaranteed
promise is ensured by the prediction and prescription working together. The
secret to wide adoption and retaining the benefits of prescriptive analytics is to
integrate the two.



• Hybrid data: This type of data combines both structured and unstructured data. By
using both structured and unstructured data, hybridized data enables the business to
reach the optimal conclusion. The prescriptive analytics technology is transformational
because it has the capacity to handle hybrid data. Nowadays, a lot of businesses work
with structured data, which consists of numbers and categories. 
• Prescriptions and side effects: Prescriptions suggest time-sensitive activities to 

improve the future using a variety of techniques. 
• Feedback mechanism: Prescriptions are typically time-sensitive action plans that
incorporate changes over a limited number of controllable influencers to foresee one
or more anticipated issues (or to capitalize on one or more anticipated opportunities)
[56]. 

In big data analytics, prescriptive analytics addresses what, when, and why of the
forecast. Analytics are performed using operational research techniques that
coordinate with the company and any applicable domain norms. As a result, the
influence and its result can be recognized right away [57] compared to descriptive
and predictive analytics. 
8. Maintenance Decision Support Models 

Fig. 3: Prescriptive analytics features. 

The most recent analysis of the literature suggests that most maintenance
models in use are intended to help decision-making procedures. The intelligence
of maintenance systems is increased by merging various data sources and
knowledge assets and by using data-science techniques like exploratory data
analysis or machine learning. This section presents several recently created
maintenance decision support models (MDSM). A comprehensive and
anticipatory approach was described by Glawar et al. [58] as being able to
"identify maintenance critical conditions and predict failure moments and quality
variations" for tooling machines. A degradation-based selective maintenance
choice problem of a continuously monitored multicomponent system was
addressed by Aghezzaf et al. [59]. A cost-effective collection of required
maintenance procedures is discovered by modelling components as time-
dependent stochastic processes. The study by Wang et al [60] also looked into "a
cloud-based paradigm of predictive maintenance based on mobile agent to
enable timely information acquisition, sharing and utilization for improved
accuracy and 



 This study reviews the state-of-the-art of intelligent maintenance systems using
descriptive, predictive, and prescriptive approaches that might influence maintenance
policies. It also discusses the implications of these approaches for innovations. AI will
also improve the reliability of the systems and reduce failure rates. With AI-based
predictive maintenance, availability can increase by up to 20% while inspection costs
and yearly maintenance expenditures are reduced by up to 25% and 10%, respectively.
The goal of machine learning algorithms is the automatic identification and classification
of faults. To be more effective for autonomous decision support based on artificial
intelligence techniques, maintenance decision support models need to put in more
effort. 

9. Conclusion 

reliability in fault diagnosis, remaining service life prediction, and maintenance
scheduling." Arab et al [61] used real-time data from workstations, such as cycle
times, buffer capacities, and mean time to repair of machines, to solve a dynamic
maintenance scheduling problem for a multi-component production system.
Additionally, Bärenfänger-Wojciechowski et al. [62] offered a reference integrated
management method dubbed "smart maintenance" that incorporates essential
maintenance knowledge assets, including people, sensors, data management,
and help technologies. Abramovici et al. [63] developed the idea of "knowledge as
a service," which facilitates knowledge allocation and the recommendation of
potential fixes in line with failure reasons and the degree of similarity between
prior failure descriptions recorded in a semantic knowledge base. Finally, Muchiri
et al. [64] created a theoretical framework for assessing the effectiveness of
maintenance interventions from a technical, management, and human
standpoint. Mehairjan et al. [65] created a maintenance management maturity
model based on five holistic dimensions, one of which was data quality, while
Schumacher et al. [66] created an Industry 4.0 maturity model, which
inferentially evaluated elements important for data-driven maintenance. These
models produce useful results in prescriptive maintenance, but they have the
following drawbacks:

They consider the dynamics of maintenance processes (using time variables),
but they do not entirely or partially consider learning and predicting how
process-related parameters will behave over time.
They are difficult to generalize to similar sets of problems since they are use-
case-specific (a singular problem),
They fail to appropriately use efficiency assessment methods and feedback
loops to raise the caliber of maintenance planning.
They employ well-established but dated process models for knowledge
discovery and data analysis, which obviously call for improvement and
extension for predictive analytics jobs.
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