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Abstract 

Asthma has been classified into subtypes based on pathophysiological conditions, immunological markers, FEV1, and FENO 
values. Nevertheless, there has been no single biomarker that can differentiate between different subtypes owing to its 
heterogenicity. These limitations urged to development of mathematical models to deduce specific differential biomarkers 
for various phenotypes of asthma with the help of a systems biology approach. The current study aims at understanding the 
differential mRNA biomarker for severe asthma and deduces a mathematical cutoff value to predict severity from healthy 
control in a non-invasive approach. Here, we report two salivary mRNA biomarkers, amphiregulin (AREG) and fibrillin 2 
(FBN2) that can differentiate severe asthma patients from healthy control samples collected from UAE residents. The 
information from the hospital records and the molecular profiling in the laboratory facilitated to the discovery of the above 
biomarkers. 
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Introduction 

At present, asthma cannot be defined by a single condition but has generally been described as airway hyperresponsiveness 
and is often associated with allergies. Asthma can be broadly classified into Th2-associated and Non-Th2-associated 
inflammatory responses (Wenzel, 2012). Further classified into subtypes based on pathophysiological conditions, 
immunological response, the fraction of exhaled nitric oxide (FENO), and forced expiratory volume in one second (FEV1) 
levels(Agache et al., 2018). The complexity in determining asthma type also falls on various environmental factors like 
exacerbations, infections, pollutants, allergens, and other unidentified triggers. Hence, a similar treatment cannot be provided 
to all the subtypes. In order to provide successful treatment to the patients recruited by asthma conditions, it is important to 
identify a specific biomarker for every sub-phenotype that can be considered as a therapeutic target. In view of the 
heterogenicity, unidentified triggers, and varied immunological responses, there is a need for a mathematical approach to 
decode the complexity and arrive at a single specific biomarker from large datasets (Tang et al., 2020).  

In the global context, the systems biology approach was used to analyze the big data available from the databases and hospital 
records to manage asthma in the respective local populations (Richards et al., 2018). Some of the biomarkers identified using 
genomics, transcriptomics, epigenetics, and other “omics” technologies have been reviewed by Tang et al and the importance 
of enlightening clinicians with systems biology tools was also emphasized (Tang et al., 2020). By using a similar approach, 
a model to predict type 2-high asthma with 100% positive predictive value was developed which was otherwise solely 
identified using conventional markers like serum IgE levels, eosinophilic count, and FENO levels but were not consistent in 
detection(Silkoff et al., 2017).  

The present study was considered to apply system biology tools to detect severe asthma conditions among the UAE population 
with the help of linear mathematical modeling and omics technology. In UAE, approximately 8-10% of adults were known 
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to suffer from asthma(B. H. S. H. Mahboub et al., 2010). According to recent reports, this percentage is going to increase and 
it is the need of the hour to rightly distinguish severe asthma patients from mild/moderate asthmatics to improve the treatment 
prospects (B. H. Mahboub et al., 2012). Asthma can be cured if treated properly and a few earlier reports proved that specific 
treatments help patients to recover faster. The major challenge is to identify the appropriate biomarker and corresponding 
therapeutic target (Tiotiu, 2018). At the moment, the only method to overcome the problem is record keeping of the patient 
history, the right clinical classification, and analyzing the patient’s molecular profile by genomics, transcriptomics, and 
epigenetics and correlating all the parameters by machine learning tools (Vijverberg et al., 2013). By this approach, a specific 
biomarker for each subtype can be identified and a personalized treatment can be prescribed. The other important outcome 
of the study would be to identify markers that can predict the possibility of an individual developing severe asthma conditions 
in the future which helps clinicians to advise patients for any lifestyle-related modifications to avoid the disease development.  

The reports from the laboratory earlier this year have established periostin (POSTN)(Hachim et al., 2020) and amphiregulin 
(AREG) (Hachim et al., 2020) as important biomarkers to differentiate non-severe and severe asthmatics from healthy control 
based on the studies on bronchial epithelial cells and ELISA method. The genome-wide association studies (GWAS) 
performed for specific populations worldwide in the context of asthma reported population-specific genes and possible 
mutations(Altman & Busse, 2017).  From such studies, using image filtering algorithms and in-house developed pipelines, 
genes that differentially expressed for severe asthmatics were deduced(Hachim et al., 2019). These differentially expressed 
genes (DEG) were considered for the current study to identify specific mRNA biomarkers for severe asthma. 

The major clinical manifestation of asthma is bronchi constriction which leads to difficulty in breathing. The tissue 
remodeling events occurring due to immunological response inside the airways and the modulatory effects of certain 
epidermal growth factors result in bronchi constriction(Enomoto et al., 2009). Hence, most of the studies related to asthma 
focus on tissue remodeling mechanisms. The major structural cell types that involve in tissue remodeling are epithelial cells, 
fibroblasts, and smooth muscle cells(Erle & Sheppard, 2014). In the present study, the primary cells obtained from the 
healthy controls and the asthmatic patients were compared for the differential biomarkers.    

The unique aspect of the current investigation is to detect severe asthma-specific biomarker in saliva samples collected from 
asthmatics and control subjects living in UAE. Globally, studies conducted to identify asthma biomarkers largely focused on 
sputum, blood, bronchial brushings, and urine samples (Vijverberg et al., 2013). The salivary biomarkers for asthma known 
so far are proteins detected by ELISA. There are no mRNA salivary biomarkers reported to date. Therefore, the current study 
attempted to develop non-invasive mRNA biomarkers from saliva for severe asthma using molecular tools and mathematical 
modeling.   

Methodology 

Sample collection 

Saliva from asthma patients and healthy controls were collected according to the previous protocol (Hachim et al., 2020). 
Ethical approval was granted for the present study under the reference number DSREC-11/2017_04 at the University of 
Sharjah. The samples were collected at Rashid Hospital, Dubai, UAE. The information about the patients and the parameters 
required for asthma regulation was recorded at the time of sample collection.  

Cell culture 

The primary cells obtained for the bronchial brushings of asthma patients and the healthy control subject were maintained at 
the tissue bank facility at Sharjah Institute of Medical Research (SIMR), College of Medicine, University of Sharjah. The 
specific culture medium required to maintain the cells was procured from Gibco, Thermo Fisher Scientific, US, and Sigma 
Aldrich, US. The primary human lung fibroblast cells for both healthy (NHLF) and asthmatic (DHLF) were obtained from 
Lonza, Switzerland. The smooth muscle cells and epithelial cells were obtained from the patient recruited in McGill 
University Health Centre/Meakins-Christie Laboratories Tissue Bank, Montreal, Canada.  

RNA isolation and cDNA synthesis 

RNA from saliva samples was isolated by Qiazol method as described in (Sullivan et al., 2020)Approximately, 500 ng of 
RNA was used to synthesize cDNA using high-capacity cDNA synthesis kit from Applied Biosystems.  

RNA was isolated from cells using Trizol method and cDNA was synthesized as described above. 
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qRT PCR 

The quantitative real-time PCR (qPCR) was performed for the cDNA obtained from both the saliva samples and the cells 
using primers for amphiregulin (AREG) and fibrillin 2 (FBN2) as listed in Table 2.  The analysis was conducted in Quant 
Studio® 3 qPCR machine from Applied Biosystems. 

Mathematical modeling method to determine the optimal value of the cutoff 

The Index of Union method was applied to the data to determine the optimal cutoff value for the specific genes across the 
different groups (Unal, 2017). The method provides an “optimal” cut-point with the best maximum sensitivity and specificity 
values simultaneously and can be summarized by the following equation: 

IU (c) = (|Se (c) − AUC| + |Sp (c) − AUC|)  (1) 

IU = Index of Union 
AUC = Area Under Curve 
Se = Sensitivity 
Sp = Specificity 
(c) = cutoff 
IU(c) = the optimal cutoff point based on the Index of Union 
 

Statistical analysis 

Data obtained from the quantitative real-time PCR were analyzed by using an in-house R script and the P value was obtained 
using Mann Whitney U test between the groups.  

Results and Discussion 

Saliva sample collection and patient information 

The whole saliva samples were collected from 10 healthy controls, 20 moderate asthma patients, and 18 severe asthmatics. 
The information regarding patient disease history and certain other characteristics was recorded using Salama Electronic 
Medical Record System launched by Dubai Health Authority (DHA). 

From the records, patient history and characteristics were retrieved and were classified into moderate and severe asthma based 
on the FEV1 values, the number of asthma attacks, and hospitalization frequency (Table 1). Hence, it is important to maintain 
the clinical records with complete information and up to date. 

Differential gene expression among the cell types 

The major cell types known to involve in tissue remodeling are smooth muscle cells, epithelial cells, and fibroblasts. From 
the qPCR data, it is evident that AREG is highly expressed in asthmatic smooth muscle cells and epithelial cells. This data is 
consistent with the earlier known fact that AREG is upregulated in injured lung tissues and bronchial epithelial cells (Kuwano 
et al., 2017).   

Similarly, FBN2 was upregulated in both the asthmatic smooth muscle cells and epithelial cells. Surprisingly, both genes 
showed no significant difference among the diseased fibroblast cells indicating their specific function in the preliminary tissue 
remodeling events. 

 Differential gene expression in saliva samples collected from the subgroups of asthma patients  

Among the asthmatics, moderate/non-severe patients could be differentiated from the severe asthmatics based on the 
expression profile for AREG and FBN2 genes. Severe asthmatics showed higher expression for AREG and lower for FBN2 
as compared to moderate asthmatics. Both genes showed a significantly higher expression in asthmatics than in healthy 
controls indicating that they can be used as asthma biomarkers. In addition, the differential pattern of expression among 
moderate and severe asthma can be exploited to differentiate the severity of the condition among the patient samples. 
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Determination of the cutoff value using the Index of Union mathematical method 

Based on the Index of Union mathematical equations, an optimal cutoff value to differentiate severe from moderate asthmatics 
was deduced for both AREG and FBN2 genes in saliva. The fold change greater than 15 for FBN2 differentiates non-severe 
asthmatics from severe. And a fold change cut-off value 2 for AREG differentiates asthmatics from healthy controls. A 
combined profile for both AREG and FBN2 could be used to predict the severity of asthma among the patients. 

Conclusion and future perspectives 

From the study, a cutoff value was determined for two salivary mRNA biomarkers amphiregulin and fibrillin 2 
using a linear mathematical model and the information from patient records to assess the severity of asthma in a 
non-invasive approach. The expression profile from the cells involved in tissue remodeling validated the mRNA 
biomarkers considered in the study. In the future, a similar study on larger datasets and robust mathematical 
modeling tools could help deduce a functional cutoff value that can be used to differentiate and predict severe 
asthma samples from moderate asthmatics and prescribe personalized medication.  
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non-invasive approach. The expression profile from the cells involved in tissue remodeling validated the mRNA 
biomarkers considered in the study. In the future, a similar study on larger datasets and robust mathematical 
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Figure 1: A schematic for the sample collection and record maintenance from patients with asthma 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                

 

Figure 2: A schematic for the strategy applied in the current study to identify saliva biomarkers for severe asthma 
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Figure 3: Differential gene expression for AREG and FBN2 among patient saliva samples (A) and asthmatic cells (B) 

HSMC-Normal Smooth Muscle cells; DSMC- Asthmatic Smooth Muscle cells; NHBE- Normal Human Bronchial epithelial 
cells; S40- severe asthmatic epithelial cells from bronchial brushings; NHLF- normal Human Lung Fibroblasts; DHLF-
Asthmatic fibroblast cells 
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Table 1: List for the data for the patients from Electronic Medical Records 

 

 

 

 

 

 

 

 

 

Table 2: List of primers used in the study 

 

Name of the parameter Moderate asthma Severe asthma 

Number of Samples 20 18 

Number of males 4 8 

Number of females 16 10 

Average age 47 44.5 

Smoking  None Four 

FEV1 average (%) 75.8 81.3 

Blood eosinophil average 

(N* 10^3/uL) 
0.27 0.56 

Exacerbations (Avg) 0.5 1.78 

Ig E levels (average) 436 534 

Allergy (number) 5 7 

Gene 
target RefSeq ID Primer 

name Primer sequence 5'-3' Fragment  
length (bp) 

FBN2 NM_001999 FBN2 S CCGGGGAGAATGACGAAAAT 72 
  FBN2 AS TTCAGGAATGGTTCCGATGC  
AREG NM_001657 AREG S GAGCACCTGGAAGCAGTAAC 151 
 

 AREG AS GGATCACAGCAGACATAAAGGC  


