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Abstract 

Industries across the world are realizing the benefits of Industry 4.0 and digital transformation. The University of South 
Carolina (UofSC) has been using digital transformation to transform processes in multiple industries and has defined a clear 
roadmap for implementing digital transformation that has been validated by use cases. UofSC has partnered with The British 
University in Egypt (BUE) to develop a framework for applying digital transformation to advance the water desalination 
industry. This collaboration utilizes BUE’s experience in design and manufacturing of physical systems such as a high-
pressure pump and UofSC’s experience in applying digital transformation to industries and developing digital twins of 
systems. 
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1  Introduction 

Fresh water shortage is threatening development and prosperity in many Middle Eastern countries, as well as several areas in 
the United States. Sea water and ground water reverse osmosis desalination is fast becoming a dominant technology for facing 
water shortage threats by cost effective production of fresh water for multiple purposes. Water desalination applications extend 
not just for desalinating drinking water, but also impacts various types of industries. With the rapid growth in the 
pharmaceutical industry, desalinated water is used for drug testing and diluting certain solutions, and in the oil and gas 
industry, fresh and low salinity water supplies are essential for enhanced oil recovery (EOR) applications. Offshore and 
onshore petroleum platforms in remote areas require gallons of freshwater every day, while shipping to these platforms is 
costly and inefficient. Furthermore, low salinity water injection is required to maintain reservoir pressure and stabilize the 
production rate. Consequently, on-site water desalination technology can benefit the oil and gas industry as it is efficient and 
less expensive.   
 
This paper will present a methodology for applying digital transformation and the impacts it can have on the water desalination 
industry. The next two sections of the paper present an introduction to digital transformation, industry 4.0, and the water 
desalination industry. Following is the methodology developed by UofSC for digital transformation and a water desalination 
use case focusing on a single component, a high-pressure pump, will highlight the challenges and outcomes of digital 
transformation. Future work could include the expansion of this use case to additional components, subystems and systems. 
  
2 Digital Transformation and Industry 4.0 

Digital transformation is more than just a singular tool, it is an entire process that takes advantage of new technologies and 
techniques such as artificial intelligence and augmented reality while also utilizing and optimizing the human factor in a 
workflow. It is a shift in the way people think about technical challenges that combines systemic problem-solving, cost-
reduction, product creation, and decentralization to approach the problems of the future with new methods, new mindsets, 
and a finely tuned drive to do better. Implementing digital transformation will lead to a decrease in cost, a decrease in time 
spent, and an increase in overall quality. An effective digital transformation implementation is not only about using state-of-
the-art technologies but also includes the training and education of all users. 

The following technologies are key to the successful implementation of an industry 4.0 or digital transformation program. 

• Cyber Physical Systems: Integrated computational and physical capabilities 
• Internet of Things: Network of physical components that are digitally connected and can sense, monitor, and 

interact 
• Digital Twin: Developed in conjunction with its physical twin and remains its virtual counterpart through the whole 

product lifespan 
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• Virtual Reality/Augmented Reality: Can be used to mimic and simulate real-life scenarios that are either expensive 
or challenging to conduct 

• Cloud Computing: Model for enabling on-demand network access to a shared pool of configurable computing 
resources 

• Simulations: Computer-based technologies focused on explicit and specific modeling tasks   

In addition, there are 5 key challenges when implementing industry 4.0 and digital transformation technologies. These 
challenges include: 

• Integration: Data is key to an Industry 4.0 or Digital Transformation program. It is necessary to incorporate data 
from multiple sources to support preliminary connectivity. There is also no one size fits all approach to implementing 
an Industry 4.0 program. 

• Control: Industry 4.0 requires the connection of every sensor, actuator, PLC and other elements. It is important to 
ensure that there is a secure and reliable method for transferring data in place and to allow for analysis in real time. 
This also requires reliable internet and wireless connections to facilitate these transfers. 

• Communication: How to create an appropriate model for secure communication and interaction between 
autonomous agents (with different operating systems) that are all connected through an IIOT network? 

• Legacy Systems: A main difficulty with the integration of Industry 4.0 into legacy systems is the availability and or 
accessibility of data to obtain information. Consequently, the communication infrastructure must be altered and 
improved to a more transparent architecture. 

• Cyber Security: In the age of Industry 4.0, where machines and “things” are connected to the network and each 
other, the scale and variety of cyber-attacks have grown exponentially. Data rights concerns when deciding on third-
party vendors for hosting and operating company data. 

2  Water Desalination   

Drinking water is considered a gift from nature to many countries. As the world population grows and consequently the 
demand for freshwater for urban, agricultural, and industrial use increases, so do the challenges arising from the need to meet 
global market demand with innovative technologies. Fresh water shortage imposes considerable threats and challenges for the 
development plans in many Arab and Middle Eastern countries. During the coming decade, it is expected that about two thirds 
of Arab countries are expected to suffer from acute water scarcity [1, 4]. Sea Water Reverse Osmosis (SWRO) desalination 
is fast becoming an inevitable solution for facing water shortage threats by cost effective production of fresh water. 

2.1 Desalination Plant 

The main components of a reverse osmosis desalination plant are illustrated in Figure 1.  

 

 
Figure 1. Key Components and Systems of a Water Desalination Plant 
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These components include:  

• The energy source that is used to operate the desalination systems can either be conventional or renewable energy. 
• The feed pump for the high-pressure pump should be a self-priming pump to protect from cavitation. It should also 

be in an accessible place below or above the waterline to allow for easier maintenance in the future. 
• Pretreatment system is essential to pretreat the feed water from any suspended solids and make sure that microbial 

growth and salt precipitation is not taking place on the membranes surface. Pretreatment can include chemical feed 
followed by sand filtration, sedimentation, flocculation, and coagulation as conventional methods. 

• High-pressure pump (HPP) is considered the heart and the essential mechanical element of the reverse osmosis water 
desalination system since the reverse osmosis (RO) is a pressure driven separation process as required feed pressure 
must go beyond the built osmotic pressure, increasing directly with water salinity. The HPP generates in the range 
of 600-1200 psi with seawater and around 150 psi for slightly brackish water that generated pressure supplies the 
water with the needed pressure to pass across the RO membranes and reject salt.  

• Reverse osmosis membranes are a pressure driven separation process that is simple, economically competitive, and 
do not require phase change, which is particularly important for heat solutions sensitivity, such as pharmaceutical 
materials and food products. RO has become the primary desalination method in the United States and is capable of 
desalinating high saline feed water. There are two common RO membrane types for water desalination: Spiral wound 
and hollow fiber. The spiral wound membrane is widely used in desalination more than the hollow fiber membrane. 
The advantages of reverse osmosis are considerable: 

1. Capable to waters with any saline content, from groundwater to seawater. 
2. Relatively low operating costs compared to resin plants, especially in the presence of influential high 

salinity. 
3. The simplicity of operation is a process that does not require periodic regeneration as occurs in resin plants. 

• Post-treatment at this level, water is getting to stabilize and getting to prepare for distribution. Disinfection and 
adjusting the alkalinity, hardness, and pH are necessary if combined with other water supply sources to meet up with 
the drinking water standards and prevent any corrosion effect in the distribution network. 

2.2 High Pressure Pump 

Pumps are mechanical devices that converts mechanical energy into hydraulic energy.  They are divided into two main types 
the positive displacement pumps such as piston pumps with industry market share of 27% and rotodynamic pumps such as 
centrifugal pumps with industry market share of 73%. Typical pressures for SWRO desalination are in the range of 50 – 80 
bar. High-pressure pumps (HPP) have a critical role in an SWRO desalination plant. The role of the HPP is to raise the 
pressure of the feed flow to allow for the permeation process through the RO membranes. Maintaining the HPP and working 
under healthy conditions keeps the desalination plant running smoothly, this is crital as fresh water is vital to maintain human 
lives. The use of the centrifugal pumps is 16% among all the rotodynamic pumps and their area of applications are 
continuously expanding [5]. With the continuous expansion of centrifugal pumps usage new problems will exist, proper pump 
selections are essential as it can avoid/prevent problems that may occur. improper pump selection leads to several operating 
problems such as cavitation, flow discontinuity, pump surge, etc. 

Either single-stage or multi-stage centrifugal pumps prevail the desalination plants for feeding and pressurizing the feed 
stream. Common problems experienced by centrifugal pumps such as cavitation, water hammering, sludge, high-pressure 
pulsation, excessive power consumption, and other mechanical and hydraulic failures may be attributed to one or several 
probable causes. Low suction pressure and low flow rate problems can be attributed to either air leaks in inlet piping or a 
faulty mechanical seal [1]. Centrifugal pumps cavitation can also lead to the same problems. Excessive lateral or axial 
vibration and noise can also be attributed to either pump rotor misalignment, excessive axial thrust or cavitation and reduces 
the pump efficiency. 

2.3 Fault Detection 

Fault detection improves the system reliability, safety, energy, and cost-efficiency, extends the pump lifetime and 
performance, achieves the efficient maintenance strategy, and reduces occurring unpredicted events that can lead to system 
shutdown and breakdowns. Early fault detection and diagnosis are essential to ensure cost-effective and safer operation to 
avoid performance degradation, unpredicted maintenance events, product deterioration, minor and major damage to the 
physical system, damage to human health, or even loss of lives. This paper focuses on one type of fault which is the cavitation 
as a use case due to its frequent occurrence. Many papers have been done fault detection in the pumping system based on 
speed variation and vibration details using signal processing and statistical models or based on machine learning algorithms 
that identify the cavitation using speed and pressure historical data [6, 7]. 

Cavitation can be considered as a major cause for centrifugal pump failures. In the first phase of cavitation, vapor bubbles are 
formed around the pump's impeller in areas of relatively low pressure below the associated vapor pressure of the working 
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fluid. While in the second phase of the cavitation, the collapse of these bubbles allows the triggering of intense shockwaves 
leading to high-speed fluid particles impact causing significant pitting and erosion of the internal pump parts [9].  Cavitation 
is a main source of centrifugal pumps health and performance degradation. Several researchers employed CFD analysis [1] 
to detect cavitation and evaluate its effect on the rotor and the pump's casing, which allowed the minimization of the 
experimental investigations.  

Cavitation analysis is performed at different operating conditions including different pump speeds and flowrates. The 
detection of bubbles formation by CFD analysis is performed by allocating the zones where pressure is lower than the 
associated vapor pressure of water.  Figure 2 presents a flow field visualization at the suction side of a centrifugal feeding 
pump impeller-diffuser arrangement where symptoms of vapor bubbles formation at the leading edges of vanes are shown 
[1]. 

3 UofSC Digital Transformation Methodology 

The University of South Carolina is continuing the development of an end-to-end methodology, shown in Figure 3, that 
leverages computer aided design and manufacturing, sensing systems, data and physics-based models, fault prediction and 
diagnosis and data visualization to create a virtual asset management toolbox.  

Figure 2. CFD Cavitation Zones Detection [1] 

Figure 3. UofSC Developed Digital Transformation Methodology 
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Varying types of analysis can be performed to look at areas such as fault detection, prognostic/diagnostic algorithms, power 
usage metric, cost benefit analysis and fault analysis. This toolbox consists of cyber-physical systems to recreate a digital twin 
in any area of interest. This approach can be used to better maintain the integrity of processes and products at any stage of a 
component’s life cycle.  
There are three types of data associated with a physical system: design, manufacturing, and operational. The data is collected 
and analyzed at the different stages of a systems life cycle and can be used to make various improvements. The data collected 
from the physical system is then used to create the digital twin of the system.  In this stage of digital transformation, how the 
data is collected is important to consider.  The optimal type, location and number of sensors needed must be identified.   

When used in parallel, a physical system and digital twin create a smart system.  This smart system can be useful in many 
areas from design improvements, verification, validation, monitoring, and even improved productivity. This smart system is 
key to digital transformation and is built on the data collected and models developed. In addition, a smart system can have 
many ways of displaying data depending on the need.       

3.1 Use Cases for Validation 

The above methodology has been validated on use cases with application in multiple industries including:  

• Healthcare: Digital transformation was used in the healthcare industry to address the need of monitoring premature 
infants. A framework for collecting infant data, conducting analysis in real-time, and presenting this information in 
easy-to-read dashboards was developed. 

• Automated Fiber Placement: The application of digital transformation to the AFP machine was needed to enhance 
capabilities, refine processes, and create overall improvements. The developed use case demonstrates a framework 
for applying new technology to legacy equipment and addressed problems in the areas of data collection and 
modeling, training, and fault detection. Digital transformation elements included augmented and virtual reality, 
machine learning, and thermal modeling. 

• General Machinery (Apache Gearbox): This use case showcased the flow of data from collection to analysis to 
presentation. The data collected includes sensor data such as vibration, temperature and torque, logistical data from 
maintenance records and manuals, and human knowledge from past experiences.  This data is then analyzed with the 
intermediate gearbox model to create predictions and recommendations on the gearbox. The analysis is presented in 
the form of custom dashboards that are tailored to fit the needs of different users. 

4 Application of Digital Transformation to Water Desalination  

Digital transformation can be used to address the challenges faced with fault detection of components in the water desalination 
plant.  For this use case, the focus will be on a single component of a single system – the high-pressure pump found  in the 
reverse osmosis system.  Elements of the digital transformation used will include digital twins, machine learning, and 
interactive dashboards. 

4.1 Physics-based Digital Twin of High-Pressure Pump 

Digital twin is the virtual representation for the physical systems. This virtual representation can be representing the physical 
system dynamics and the products [12]. The digital twin can achieve based on one digital model or combination of digital and 
mathematical models, such as computational fluid dynamics, finite element analysis, thermodynamics, kinematic, dynamic, 
and machine learning models. These models can be simulated or experimented with real-world data [14]. The digital twin is 
used to simulate and generate data under healthy environmental and harsh conditions and properties, shuffling these generated 
data with the real-world collected data to improve the digital twin accuracy. Using digital twin helps decision-makers better 
understand the system and improve and optimize the design, manufacture, health monitoring, and performance. Digital twins 
can also be used in predictive maintenance by generating sets of faulted data under different harsh conditions and integrating 
them with machine learning and real-time control algorithms to teach the physical system to detect and classify the faults in 
real-time and react accordingly to each type of failure. Augment digital twin model in the predictive maintenance area aims 
to predict and prevent future faults from occurs [1]. In our research paper, the machine learning model and saw-tooth model 
will be integrated together to detect cavitation and implement more unsupervised algorithms to the machine learning model 
to generates several faults data sets and classify the fault severity. For example, our use case in this paper is the cavitation 
fault the machine learning model will be able to classify what type of cavitation based on the location of bubbles implosion, 
the location of the cavity inception, and the difference in the frequency range. After integrating the HPP digital model together 
and achieve HPP digital twin move forward to the following water desalination system components such as the RO 
membranes to the next element. When each component has its own digital twin, start to connect all these digital twin models 
to achieve a smart water desalination plant; after that, it combines more than one plant to be monitored from one dashboard. 

The following are the steps to build a digital twin: 

• Understand the physics that governs the operation of the physical system (pump) 
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• Determine the input/output variables (that can be measured) and the design parameters that control the performance 
• Build physics-based digital models to simulate the pump behavior under healthy environmental and harsh conditions 

and to detect and predict the future faults. 
• Interconnect the physical system (pump) and its digital models 

4.1.1 Models of Cavitation Pressure Pulses in Centrifugal Pumps 

The paper presents two different fault detection digital models one using the saw-tooth model that can express the excitation 
of the centrifugal pump under cavitation with Fourier expansion and describe the periodic function with combination of sine 
and cosine waves instead of transfers the real-world data from time domain to frequency domain which made this model more 
cost and time effective. As the pressure pulses within the diffuser tongue region can be modeled as a sawtooth wave, each 
pressure pulse acts on the blade's projected area, resulting in a periodic exciting force on the rotating impeller. Each blade 
projected area has a zero value at both the beginning and the endpoints of the blade-diffuser interaction region. Therefore, it 
can also be approximated in terms of another saw-tooth wave. The saw-tooth digital model was successfully integrated and 
tested with the physical system, and it showed its accuracy, as shown in the section below. The second cavitation detection 
model is a machine learning model that integrated three machine learning algorithms-- the support vector machine, k-nearest 
neighbors, and logistic regression. The data analysis is based on millions of real-world historical data points that are processed 
from mounted sensors on the physical system, the data were mainly collected from six different parameters vibration sensors, 
dynamic and static pressure sensors, and flow rate sensors. Based on this machine learning model, potential cavitation faults 
are successfully classified and recognized, ensuring 99.5% prediction accuracy after preprocessing and training 80% of these 
data sets and testing the 20%. 

Pressure pulsations developed due to cavitation in centrifugal pumps were investigated experimentally by several researchers 
[2, 3]. It was reported that interaction between impeller blades and the diffuser results in pressure pulsations dominated by 
the Blade Pass Frequency (BPF) times the number of diffuser tongues [2, 4]. These pressure pulsations are converted into 
periodic force pulsations affecting the rotor as well as the casing of the pump through the impeller projected area. Ref. [1] 
presented an illustration that describes how blade-diffuser tongues interaction causes sudden changes in pressure over each 
blade. This sudden change in pressure is repeated five times which matches the number of diffuser tongues. 

Equation (1) and Equation (2) presents the saw-tooth function that expresses the pressure pulses. 

𝑃𝑃(𝑡𝑡) = 2. 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. 𝑡𝑡/(𝑇𝑇𝑇𝑇)    [0 ≤ 𝑡𝑡 ≤ 𝑇𝑇𝑇𝑇/2]  (1) 
 

𝑃𝑃(𝑡𝑡) = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 2. 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃((𝑡𝑡 − 𝑇𝑇𝑇𝑇/2)/(𝑇𝑇𝑇𝑇)) [𝑇𝑇𝑇𝑇/2 ≤ 𝑡𝑡 ≤ 𝑇𝑇𝑇𝑇]  (2) 
 
Where; 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 is the peak value of the pressure pulse and 𝑇𝑇𝑇𝑇 is the period of the pressure pulse. 

Equation (3) and Equation (4) presents the saw-tooth function that expresses the blade projected area.   

𝐴𝐴(𝑡𝑡) = (2. 𝐴𝐴𝐴𝐴. 𝑛𝑛. 𝑁𝑁 ). 𝑡𝑡        [0 ≤ 𝑡𝑡 ≤ 1/(2. 𝑛𝑛. 𝑁𝑁)] (3) 
 

𝐴𝐴(𝑡𝑡) = (2. 𝐴𝐴𝐴𝐴. 𝑛𝑛. 𝑁𝑁 ). ( 1
𝑛𝑛.𝑁𝑁 − 𝑡𝑡)          [1/(2. 𝑛𝑛. 𝑁𝑁) ≤ 𝑡𝑡 ≤ 1/(𝑛𝑛. 𝑁𝑁)]  (4) 

Where;  𝐴𝐴𝐴𝐴  is maximum projected area of the blade. 𝑛𝑛 is the number of the diffuser tongues and 𝑁𝑁 is the rotational speed of 
the pump c.p.s. where the normalized saw-tooth pressure pulses as well as the blade projected area during one revolution (1/ 
𝑁𝑁 = 0.02857 sec) respectively. Equations (1), (2), (3), and (4) are combined to determine the periodic force acting on each 
blade due to its interaction with the diffuser tongues during each revolution at the cavitation condition 

 

 
Figure 4. Normalized Forces on All Blades During One Revolution 

Varying types of analysis can be performed to look at areas such as fault detection, prognostic/diagnostic algorithms, power 
usage metric, cost benefit analysis and fault analysis. This toolbox consists of cyber-physical systems to recreate a digital twin 
in any area of interest. This approach can be used to better maintain the integrity of processes and products at any stage of a 
component’s life cycle.  
There are three types of data associated with a physical system: design, manufacturing, and operational. The data is collected 
and analyzed at the different stages of a systems life cycle and can be used to make various improvements. The data collected 
from the physical system is then used to create the digital twin of the system.  In this stage of digital transformation, how the 
data is collected is important to consider.  The optimal type, location and number of sensors needed must be identified.   

When used in parallel, a physical system and digital twin create a smart system.  This smart system can be useful in many 
areas from design improvements, verification, validation, monitoring, and even improved productivity. This smart system is 
key to digital transformation and is built on the data collected and models developed. In addition, a smart system can have 
many ways of displaying data depending on the need.       

3.1 Use Cases for Validation 

The above methodology has been validated on use cases with application in multiple industries including:  

• Healthcare: Digital transformation was used in the healthcare industry to address the need of monitoring premature 
infants. A framework for collecting infant data, conducting analysis in real-time, and presenting this information in 
easy-to-read dashboards was developed. 

• Automated Fiber Placement: The application of digital transformation to the AFP machine was needed to enhance 
capabilities, refine processes, and create overall improvements. The developed use case demonstrates a framework 
for applying new technology to legacy equipment and addressed problems in the areas of data collection and 
modeling, training, and fault detection. Digital transformation elements included augmented and virtual reality, 
machine learning, and thermal modeling. 

• General Machinery (Apache Gearbox): This use case showcased the flow of data from collection to analysis to 
presentation. The data collected includes sensor data such as vibration, temperature and torque, logistical data from 
maintenance records and manuals, and human knowledge from past experiences.  This data is then analyzed with the 
intermediate gearbox model to create predictions and recommendations on the gearbox. The analysis is presented in 
the form of custom dashboards that are tailored to fit the needs of different users. 

4 Application of Digital Transformation to Water Desalination  

Digital transformation can be used to address the challenges faced with fault detection of components in the water desalination 
plant.  For this use case, the focus will be on a single component of a single system – the high-pressure pump found  in the 
reverse osmosis system.  Elements of the digital transformation used will include digital twins, machine learning, and 
interactive dashboards. 

4.1 Physics-based Digital Twin of High-Pressure Pump 

Digital twin is the virtual representation for the physical systems. This virtual representation can be representing the physical 
system dynamics and the products [12]. The digital twin can achieve based on one digital model or combination of digital and 
mathematical models, such as computational fluid dynamics, finite element analysis, thermodynamics, kinematic, dynamic, 
and machine learning models. These models can be simulated or experimented with real-world data [14]. The digital twin is 
used to simulate and generate data under healthy environmental and harsh conditions and properties, shuffling these generated 
data with the real-world collected data to improve the digital twin accuracy. Using digital twin helps decision-makers better 
understand the system and improve and optimize the design, manufacture, health monitoring, and performance. Digital twins 
can also be used in predictive maintenance by generating sets of faulted data under different harsh conditions and integrating 
them with machine learning and real-time control algorithms to teach the physical system to detect and classify the faults in 
real-time and react accordingly to each type of failure. Augment digital twin model in the predictive maintenance area aims 
to predict and prevent future faults from occurs [1]. In our research paper, the machine learning model and saw-tooth model 
will be integrated together to detect cavitation and implement more unsupervised algorithms to the machine learning model 
to generates several faults data sets and classify the fault severity. For example, our use case in this paper is the cavitation 
fault the machine learning model will be able to classify what type of cavitation based on the location of bubbles implosion, 
the location of the cavity inception, and the difference in the frequency range. After integrating the HPP digital model together 
and achieve HPP digital twin move forward to the following water desalination system components such as the RO 
membranes to the next element. When each component has its own digital twin, start to connect all these digital twin models 
to achieve a smart water desalination plant; after that, it combines more than one plant to be monitored from one dashboard. 

The following are the steps to build a digital twin: 

• Understand the physics that governs the operation of the physical system (pump) 
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Figure 4 depicts the normalized force pulsations on the six blades of the impeller, assuming that the first blade of the impeller 
is at a zero-degree angle and the six blades are equally spaced at 2𝜋𝜋/6 rad (60-degree angle). 

The summation of normalized forces on the six blades in time domain and frequency domain are shown in Figure 5 and Figure 
6 respectively. The major frequency observed at 1050 Hz corresponds to the blade pass frequency (BPF) (6 x 35 Hz) times 
the number of diffuser tongues. It is worthwhile to note here that results of this pressure pulsation model agrees with 
experimental results obtained in [2, 4]. 

 

 
Figure 5. Time Domain of Net Pressure Forces on All Blades During One Revolution 

 
Figure 6. Frequency Domain of Net Pressure Forces on All Blades During One Revolution 

4.1.2 Investigating the Vibration Response of Centrifugal Pumps Under Cavitation Condition 

Models are derived to describe the vibration response of the rotor as well as the casing of feeding centrifugal pump under 
cavitation condition.  
Equation (5) depicts the forced vibration of the rotor in matrix form. 

𝑚𝑚. 𝑋𝑋°°(𝑡𝑡) + 𝐶𝐶. 𝑋𝑋°(𝑡𝑡) + 𝐾𝐾. 𝑋𝑋(𝑡𝑡) = 𝐹𝐹𝐹𝐹(𝑡𝑡), 𝑋𝑋(𝑜𝑜), 𝑋𝑋°(𝑜𝑜) = 0      (5) 
 
Where; 𝑋𝑋(𝑡𝑡) is the state vector that expresses the rotor displacement in horizontal and vertical directions,  𝐶𝐶  is viscous 
damping matrix, 𝐾𝐾  is the stiffness matrix and 𝐹𝐹𝐹𝐹(𝑡𝑡)  is the periodic exiting force vector that results from the cavitation 
condition. Table 1 presents the main specifications of the rotor under consideration [1]. Effectively the periodic exiting force 
acting on the rotor, results from the summation of all forces acting on each blade of the impeller. Accordingly, the horizontal 
component and the vertical component of the resultant force vector are given by Equations (6) and (7) respectively. 

Part Specification 
Impeller Mass=0.507 kg 

Motor Rotor Mass=2.264 kg 
Motor fan Mass=.04 kg 

Rotor Length=0.251 m 
Table 1: Rotor Main Specifications 

𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡) = 𝐹𝐹𝐹𝐹(𝑡𝑡). 𝑐𝑐𝑐𝑐𝑐𝑐 (ѡ𝑡𝑡)                                                                                        (6) 
 

𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡) = 𝐹𝐹𝐹𝐹(𝑡𝑡). 𝑠𝑠𝑠𝑠𝑠𝑠 (ѡ𝑡𝑡)                                                                   (7) 
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Figure 7 and Figure 8 presents the normalized horizontal and vertical exiting force components on the six impeller blades in 
time domain and frequency domain respectively.  

 
Figure 7. Normalized Exiting Force Components of Pump Rotor Under Cavitation Fault 

 
Figure 8. Normalized Exiting Force Components of Pump Rotor Under Cavitation Fault 

Figure 9 depicts the rotor response to the periodic exiting vertical force component under cavitation condition. 

 
Figure 9. Pump Rotor Response to Periodic Pressure Force Vertical Component 

The pump casing can be treated as a pressure vessel subject to periodic internal radial force resulting from the pressure waves 
of vapor bubbles collapse under the cavitation condition. In this case, the periodic internal force is determined by the pressure 
pulses times the casing internal surface area. The frequency of this periodic internal force corresponds to the number of 
impeller blades times the number of diffuser tongues times the synchronous frequency. Physically this frequency expresses 
the number of pressure pulses resulting from the total number of blade-diffuser tongues interactions per one revolution. 
A simple state space model that describes the vibration of the pump casing is given by Equation (8). 

𝑀𝑀𝑀𝑀. 𝑞𝑞°°(𝑡𝑡) + 𝐾𝐾𝐾𝐾. 𝑞𝑞(𝑡𝑡) = 𝐹𝐹𝐹𝐹(𝑡𝑡), 𝑞𝑞(0) = 0 , 𝑞𝑞°(0) = 0                      (8) 
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Where, 𝑀𝑀𝑀𝑀 is the mass of the casing, 𝐾𝐾𝐾𝐾 is the stiffness of the casing and 𝑞𝑞(𝑡𝑡) is the displacement. 𝐹𝐹𝐹𝐹(𝑡𝑡) is the periodic 
internal exiting force that can be determined by multiplying the pressure pulses function of Equations (1) and (2) by the 
internal surface area of the casing. To investigate the vibration response of the casing, one approach is to integrate equation 
(8). In this case 𝐹𝐹𝐹𝐹(𝑡𝑡) is expressed in time domain using Fourier expansion where 𝐹𝐹𝐹𝐹(𝑡𝑡) is decomposed into the sum of 
harmonic functions whose frequencies are multiples of the exiting force frequency. Equation (9) depicts the Fourier expansion 
expression of 𝐹𝐹𝐹𝐹(𝑡𝑡).  

𝐹𝐹𝐹𝐹(𝑡𝑡) = 𝑎𝑎0 
2  + ∑ [ 𝑎𝑎𝑎𝑎. cos(𝑛𝑛ѡ𝑜𝑜𝑜𝑜) + 𝑏𝑏𝑏𝑏. 𝑠𝑠𝑠𝑠𝑠𝑠 (𝑛𝑛ѡ𝑜𝑜𝑜𝑜)]∞

𝑖𝑖=1    (9) 

 
Where: 

a0 =2𝐴𝐴𝐴𝐴/𝑇𝑇𝑇𝑇[∫ 2. 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. 𝑡𝑡𝑡𝑡𝑡𝑡
𝑇𝑇𝑇𝑇    

𝑇𝑇𝑇𝑇
2

0  + ∫ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 2. 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. (𝑡𝑡−𝑇𝑇𝑇𝑇
2

𝑇𝑇𝑇𝑇    ) 𝑑𝑑𝑑𝑑𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇
2

]             
(10) 

 

𝑎𝑎𝑎𝑎 = 𝐴𝐴𝐴𝐴/𝑇𝑇𝑇𝑇[∫ 2. 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. cos(𝑛𝑛ѡ𝑜𝑜𝑜𝑜) 𝑡𝑡𝑡𝑡𝑡𝑡
𝑇𝑇𝑇𝑇    

𝑇𝑇𝑇𝑇
2

0  + ∫ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 2. 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. cos(𝑛𝑛ѡ𝑜𝑜𝑜𝑜) (𝑡𝑡−𝑇𝑇𝑇𝑇
2

𝑇𝑇𝑇𝑇    ) 𝑑𝑑𝑑𝑑𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇
2

 
(11) 

 
𝑏𝑏𝑏𝑏 = 0              (𝐹𝐹𝐹𝐹(𝑡𝑡) is an even function)                                                  (12) 

 
Figure 10 presents the time domain of the normalized steady state vibration response of pump casing. Figure 11 presents the 
frequency response of the pump casing subjected to the simulated periodic internal force due to cavitation. 

 
Figure 10. Normalized Steady State Vibration of Pump Casing 

 
Figure 11. Vibration Response of Pump Casing 

The main vibration frequency is 1050 Hz which corresponds to synchronous frequency times the number of blades times the 
number of diffuser tongues. This result indicates that the developed pump casing model governed by Equations (8) through 
(12) has detected the vibration of the casing due to the pressure pulses generated by the cavitation. 

The centrifugal pump is a hydraulic turbomachinery that continuously transfers energy to the feed water in a desalination 
plant. The longevity of centrifugal pumps depends on proper maintenance and early faults detection. In this case study, 
cavitation in centrifugal pumps is considered. Mathematical models that express pressure pulses as well as the resulting exiting 



© Copy rights reserved for The Arab Council of Operation and Maintenance

OMAINTEC Journal 
(Journal of Scientific Review)

89

periodic forces were developed. Digital models describing the vibration response of pump rotor and casing under cavitation 
periodic excitation were tested for a typical small feeding centrifugal pump. Power Spectrum analysis was conducted to 
present the frequency response characteristics of pump rotor and casing. The dominant detected vibration frequency was 1050 
HZ which corresponds to the synchronous frequency times the number of impeller blades times the number of diffusers 
tongues such results are in agreement with previously published work as well as actual vibration measurements.  

4.1.2 Using Machine Learning models in fault detection 

Regarding the trendy automatisms and working in an uncertain, evolutionary environment the current industrial plants and 
systems become more and more mechatronics complex [13]. The classification and detection of the mechanical system faults 
is an essential task for a reliable operation. As mentioned above cavitation is one of the most disadvantage problems that 
occurs frequently in the centrifugal pumps Fault detection using Machine learning algorithms attracted much attention this 
decade because it is a powerful, fast, computational method that can detect the centrifugal pumps faults efficiently [10, 11]. 
Fault detection using machine learning has been a promising technique of releasing the human labor contribution as it is 
recognizing the machines health state automatically [14]. The ML model is integrated three machine learning algorithms: 

• SVM: is a supervised classification and regression learning algorithm that has strong linear, nonlinear and kernel 
generalization ability functions. The goal of the algorithm is to create a hyperplane boundary between the possible 
outputs to separate them into the correct categories. Any new data point can be easily put in the correct category 
using the hyperplane. SVM algorithm trains different real-world historical data and can efficiently detect cavitation 
with high accuracy and excellent performance. 

• KNN: is a supervised classification learning algorithm and one of the simplest ML algorithms that help in fault 
detection. KNN algorithm assumes the similarity between the data and puts them into the most similar category to 
the available categories. KNN has been applied before for different fault detection mechanical use cases, and it 
showed high accuracy and good scalability. 

• Logistic Regression: is a supervised regression analysis method in which the outcome is binary or dichotomous using 
predictor variables. Logistic regression is also considered a supervised learning classification algorithm used 
efficiently in predicting the probability of a dependent variable. The model showed a high accuracy to detect the 
cavitation as it has been used to build predictive models as a function of predictors and because of the data linearity. 

 

 
Figure 12. (a) and (b) Collected vibration data before and after cavitation, (c) Collected dynamic pressure data before and 

after cavitation 

Parts a and b of Figure 12 represents the vibration data that have been collected from two vibration sensors one is mounted to 
collect the pump’s impeller vibration data and the second vibration sensor is mounted to collect the pump’s diffuser vibration 
data. The blue plots represent the data before cavitation exist and takes 0 label, where the orange plots represent the data after 
cavitation and takes label of 1. The vibration amplitude before cavitation was greater than after cavitation and these real-world 
collected results can be explained by studying the pressure pulsation data that was collected by using dynamic pressure sensor 
and represented in part c of the above figure. Part c shows that the dynamic pressure amplitude before the cavitation was 
greater than after cavitation because of decreasing in the exciting force magnitude affecting the pump’s rotor during the 
cavitation and this decreasing magnitude corresponds to the decrease in ∆𝑃𝑃 = (𝑃𝑃2− 𝑃𝑃1) [1].  Due to the bubble’s explosion at 
this point during cavitation 𝑃𝑃1 increase at this BPF frequency the spectral peak does not show any significant decrease from 
normal to cavitation condition [1]. 

Figure 13 shows three confusion matrices generated by three different ML algorithms the SVM, the KNN, and the Logistic 
regression. Confusion matrices represent the detailed algorithm performance in terms of true negatives (TN), true positives 
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(TP), false positives (FP), and false negatives (FN). In the presented use case, 104,963 TP data sets were predicted successfully 
as cavitated data sets. In contrast, three FN data sets were falsely predicted as healthy data before the cavitation generates. 
Where 104,652 TN data sets were truly predicted as healthy data sets successfully, while 97 FP data sets were falsely predicted 
as cavitated data, however, it was not cavitated data sets. This SVM algorithm accuracy is > 99.5% however, the occurrence 
of 97 falsely predicted as faulty data sets was not acceptable because that can yield to an unplanned/spontaneous decision like 
shutdown the pump several times, which cause unstable water production and industry disturbance. The KNN algorithm 
improved the predicted data by decreasing the number of FP data sets; the algorithm is more accurate and efficient than the 
SVM model as it is more cost and time-efficient in detecting the cavitation faults. However, while the KNN algorithm was 
working on decreasing the number of FP data sets to 36% of the SVM model, the number of FN data sets increased, which is 
not acceptable as it means more cavitation data sets will exist without predicting them. Applying the logistic regression 
algorithm to reduce the two types of errors, the FP and FN detected data sets. The logistic regression algorithm was the most 
time-efficient model, and it supported the most accurate fault detection result with f1 accuracy of 99.996% because of the 
data linearity. 

 
Figure 13: Confusion matrix using SVM, KNN & Logistic Regression 

The machine learning models accuracy was calculated using the F1 score method. Different methods can calculate the 
accuracy of the three models; two methods are recommended for calculating the model accuracy and their equations are listed 
below. The accuracy method is more recommended when the machine learning models users are more attracted to the True 
Positives, and True Negatives detected points [15]. In contrast, the F1 score method is more recommended when False 
Negatives and False Positives are crucial. In most real-life classification problems, the F1 score method is applied because 
the imbalanced class distribution exists, and it is a better metric to evaluate the model [16]. The aim of using three different 
ML algorithms and comparing them with each other even with each model's high accuracy, which exceeds 99.5%, is to 
combining these three models' fault detection before making any decision that can affect the industry. For example, the SVM 
algorithm is one of the most robust classification algorithms that has been introduced and applied before on several fault 
detection problems on mechanical, hydraulic, and electrical components. However, SVM showed less efficiency than the 
KNN model, which was lower than the Logistic regression model in our cavitation detection case. SVM showed the existence 
of 97 false positives detected points and if the fault detection model depended on just one ML algorithm instead of the three 
ML models combined with the saw-tooth physical-based model, several false decisions would occur by the machine operators 
due to generated false alarms, which could affect the logistics, planning and disrupt the production systems by causing 
production delay. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

𝐹𝐹1 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 2 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

4.2 Monitoring 

In the last decade identifying fault occurrence in time was a challenge not only in mechanical components but in several 
industrial components. These industrial components are subjected to different uncertain environmental conditions and damage 
caused by acoustic emissions, misbalance, misalignment, occasional shocks, poor power quality, supply imbalance, and 
vibrations, and the way it is handled, which can lead to unscheduled maintenance interventions which is difficult to perform 
and expensive [5, 8]. Nowadays with the development of the diagnostic abilities in the health monitoring area because of the 
enhancement of the sensor’s technologies, data driven techniques, big data analytics, data preprocessing, machine learning, 
signal processing algorithms, smart control, artificial intelligence, and the development of the computational power. Health 
monitoring advancing the evaluating and monitoring of the industrial systems by improving the systems reliability and life 
cycle management and avoiding machines shutdown for more periodic maintenance and breakdown time.    
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Figure 14. Implemented water desalination system status monitoring scheme for fault prediction 

This approach is conducted by a joint team from the Center of Excellence in Predictive Maintenance (CPM) at the British 
University of Egypt (BUE) and the Center for Predictive Maintenance (CPM) at the University of South Carolina (USC), 
USA. The Egyptian team leads the part of designing and manufacturing and full integration of the small RO water desalination 
system equipped with onboard monitoring, data extraction and control system. Having the physical system in Egypt supported 
both teams with a solid understanding of the system’s physical behavior and properties, by monitoring the system under 
healthy and generated harsh conditions, collecting real-world data by employing adequate sensors and a data acquisition 
system that sensing and extracting the pump parameters such as static and dynamic pressure, flow rate, salinity, and vibration 
data. The US team develops an Industry 4.0 framework, including a digital twin of the system that will allow for self-diagnosis 
and system decision making to ensure optimal performance. These features enable remote monitoring and control of the 
desalination plant. The digital twin (DT) health monitoring system (HMS) receives data from onboard sensor monitoring 
critical variables of the plant in Egypt, train and compare these extracted measurements to the plant’s historical and theoretical 
models’ output. This enables the system to optimize its performance to achieve prolonged life predictions and better 
efficiency. The current health of the system will be updated in real-time and will be shared with a remote decision-making 
authority. If there is an anomaly in the readings, corrective action will be initiated, and responsible personnel would be alerted 
to the new state of the system. The Internet of Things (IoT) enables this interconnected network of machines and people and 
will enable the existence of a reliable, remotely operated, automated, decentralized SWRO water treatment plant in the desert. 

4.3 Dashboards 

Dashboards allow for all processing, storage, and calculations to be conducted in one location. They also present the necessary 
information quickly and in an easy-to-understand format so that decisions are made with more knowledge and can yield better 
results. Once the fault detection models have been implemented, the analysis and results will need to be presented to allow 
users to quickly understand any problems and inform their decisions. Additional benefits of these dashboards are the ability 
to enhance training and facilitate knowledge transfer through simulating hands-on experience. A key part of these dashboards 
is that the information presented is customized and tailored to fit the needs of different users. Two sample views are shown 
in Figure 15. The left side shows a user the health status of the multiple water desalination plants they are overseeing, an 
executive might use this view to make decisions.  The right side shows the health and status of a specific system and the fault 
detection analysis. 

5 Conclusion

The use case in Section 4 was only applied to a single component, a high-pressure pump, but digital transformation can be
applied in stages. The lessons learned, framework, data, and algorithms developed when focusing on a single component can
be expanded to cover the system and later the entire plant. Figure 16 shows the steps of expanding from high pressure pump
to smart plant.

• Step 1: Apply Digital Transformation to a single component of a system in the plant such as the high-pressure pump
of the reverse osmosis system.

• Step 2: All algorithms, models and techniques developed in Step 1 will be expanded and applied to all the components
of the reverse osmosis system.
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• Step 3: All algorithms, models, and techniques developed in Step 2 will be expanded and applied to the remaining 
systems of the plant. 

• Step 4: Expand the application of digital transformation to a network of smart plants allowing users to monitor both 
individual plants and the interactions between plants. 

 

 
Figure 15. Dashboard Views 

 

 
Figure 16. Incremental Application of Digital Transformation 

  

 
Figure 14. Implemented water desalination system status monitoring scheme for fault prediction 

This approach is conducted by a joint team from the Center of Excellence in Predictive Maintenance (CPM) at the British 
University of Egypt (BUE) and the Center for Predictive Maintenance (CPM) at the University of South Carolina (USC), 
USA. The Egyptian team leads the part of designing and manufacturing and full integration of the small RO water desalination 
system equipped with onboard monitoring, data extraction and control system. Having the physical system in Egypt supported 
both teams with a solid understanding of the system’s physical behavior and properties, by monitoring the system under 
healthy and generated harsh conditions, collecting real-world data by employing adequate sensors and a data acquisition 
system that sensing and extracting the pump parameters such as static and dynamic pressure, flow rate, salinity, and vibration 
data. The US team develops an Industry 4.0 framework, including a digital twin of the system that will allow for self-diagnosis 
and system decision making to ensure optimal performance. These features enable remote monitoring and control of the 
desalination plant. The digital twin (DT) health monitoring system (HMS) receives data from onboard sensor monitoring 
critical variables of the plant in Egypt, train and compare these extracted measurements to the plant’s historical and theoretical 
models’ output. This enables the system to optimize its performance to achieve prolonged life predictions and better 
efficiency. The current health of the system will be updated in real-time and will be shared with a remote decision-making 
authority. If there is an anomaly in the readings, corrective action will be initiated, and responsible personnel would be alerted 
to the new state of the system. The Internet of Things (IoT) enables this interconnected network of machines and people and 
will enable the existence of a reliable, remotely operated, automated, decentralized SWRO water treatment plant in the desert. 

4.3 Dashboards 

Dashboards allow for all processing, storage, and calculations to be conducted in one location. They also present the necessary 
information quickly and in an easy-to-understand format so that decisions are made with more knowledge and can yield better 
results. Once the fault detection models have been implemented, the analysis and results will need to be presented to allow 
users to quickly understand any problems and inform their decisions. Additional benefits of these dashboards are the ability  
to enhance training and facilitate knowledge transfer through simulating hands-on experience. A key part of these dashboards 
is that the information presented is customized and tailored to fit the needs of different users. Two sample views are shown 
in Figure 15. The left side shows a user the health status of the multiple water desalination plants they are overseeing, an 
executive might use this view to make decisions.  The right side shows the health and status of a specific system and the fault 
detection analysis. 

5 Conclusion         

The use case in Section 4 was only applied to a single component, a high-pressure pump, but digital transformation can be 
applied in stages. The lessons learned, framework, data, and algorithms developed when focusing on a single component can 
be expanded to cover the system and later the entire plant. Figure 16 shows the steps of expanding from high pressure pump 
to smart plant. 

• Step 1: Apply Digital Transformation to a single component of a system in the plant such as the high-pressure pump 
of the reverse osmosis system. 

• Step 2: All algorithms, models and techniques developed in Step 1 will be expanded and applied to all the components 
of the reverse osmosis system. 
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